summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorhxer7963 <hxer7963@gmail.com>2024-03-29 21:37:03 +0800
committerGitHub <noreply@github.com>2024-03-29 14:37:03 +0100
commit069574775cea67d8a977904e4d534aff47a671f4 (patch)
tree0a599af29292d6ec5826533fa4bfc60e0e33f573
parentcfde806eb95de06d84162bdee593dad33a1d2693 (diff)
[Model] Add support for xverse (#6301)
* Support xverse model convert to gguf format. * 1. Convert xverse models to gguf; 2. Add LLM_ARCH_XVERSE inference in llama.cpp; 3. Add xverse item in Supported models in README.md; * * gguf-py: remove redundant logs * llama: remove the init_mapping_prefetch custom parameter * llama.cpp: Include the changes from #6122 to exclude the unused outputs of the last layers. * - Fix format issues - Remove duplicate set kqv_out to llm_build_kv * Update llama.cpp --------- Co-authored-by: willhe <willhe@xverse.cn> Co-authored-by: willhe <hexin@xverse.cn>
-rw-r--r--README.md1
-rwxr-xr-xconvert-hf-to-gguf.py142
-rw-r--r--gguf-py/gguf/constants.py22
-rw-r--r--llama.cpp165
4 files changed, 329 insertions, 1 deletions
diff --git a/README.md b/README.md
index 74d9d3fa..42925c21 100644
--- a/README.md
+++ b/README.md
@@ -115,6 +115,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba)
+- [x] [Xverse](https://huggingface.co/models?search=xverse)
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
**Multimodal models:**
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index 6a2ce187..18337839 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -773,6 +773,148 @@ class BaichuanModel(Model):
return weights[r * n_part:r * n_part + r, ...]
+@Model.register("XverseForCausalLM")
+class XverseModel(Model):
+ model_arch = gguf.MODEL_ARCH.XVERSE
+
+ def set_vocab(self):
+ assert (self.dir_model / "tokenizer.json").is_file()
+ dir_model = self.dir_model
+ hparams = self.hparams
+
+ tokens: list[bytearray] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(dir_model)
+ vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+ assert max(tokenizer.vocab.values()) < vocab_size
+
+ reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+ added_vocab = tokenizer.get_added_vocab()
+
+ for token_id in range(vocab_size):
+ token_text = reverse_vocab[token_id].encode('utf-8')
+ # replace "\x00" to string with length > 0
+ if token_text == b"\x00":
+ toktype = gguf.TokenType.BYTE # special
+ token_text = f"<{token_text}>".encode('utf-8')
+ elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
+ toktype = gguf.TokenType.BYTE # special
+ elif reverse_vocab[token_id] in added_vocab:
+ if tokenizer.added_tokens_decoder[token_id].special:
+ toktype = gguf.TokenType.CONTROL
+ else:
+ toktype = gguf.TokenType.USER_DEFINED
+ else:
+ toktype = gguf.TokenType.NORMAL
+
+ tokens.append(token_text)
+ toktypes.append(toktype)
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+ hf_repo = self.hparams.get("_name_or_path", "")
+
+ ctx_length = 0
+ if "max_sequence_length" in self.hparams:
+ ctx_length = self.hparams["max_sequence_length"]
+ elif "max_position_embeddings" in self.hparams:
+ ctx_length = self.hparams["max_position_embeddings"]
+ elif "model_max_length" in self.hparams:
+ ctx_length = self.hparams["model_max_length"]
+ else:
+ print("gguf: can not find ctx length parameter.")
+ sys.exit()
+
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_source_hf_repo(hf_repo)
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+ self.gguf_writer.add_context_length(ctx_length)
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ def write_tensors(self):
+ # Collect tensors from generator object
+ model_kv = dict(self.get_tensors())
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ for name, data_torch in model_kv.items():
+ # we don't need these
+ if name.endswith(".rotary_emb.inv_freq"):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ # HF models permute some of the tensors, so we need to undo that
+ if name.endswith(("q_proj.weight")):
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
+ if name.endswith(("k_proj.weight")):
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+ self.gguf_writer.add_tensor(new_name, data)
+
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape)
+ )
+
+
@Model.register("FalconForCausalLM", "RWForCausalLM")
class FalconModel(Model):
model_arch = gguf.MODEL_ARCH.FALCON
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index 4ab02648..27eaf723 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -123,6 +123,7 @@ class MODEL_ARCH(IntEnum):
GEMMA = auto()
STARCODER2 = auto()
MAMBA = auto()
+ XVERSE = auto()
COMMAND_R = auto()
@@ -191,6 +192,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba",
+ MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
}
@@ -606,6 +608,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
],
+ MODEL_ARCH.XVERSE: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ROPE_FREQS,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.ATTN_ROT_EMBD,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ ],
MODEL_ARCH.COMMAND_R: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -650,6 +668,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
+ MODEL_ARCH.XVERSE: [
+ MODEL_TENSOR.ROPE_FREQS,
+ MODEL_TENSOR.ATTN_ROT_EMBD,
+ ],
}
#
diff --git a/llama.cpp b/llama.cpp
index 1875e247..97408ba1 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -218,6 +218,7 @@ enum llm_arch {
LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
+ LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_UNKNOWN,
};
@@ -249,6 +250,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
+ { LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -879,6 +881,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
},
},
{
+ LLM_ARCH_XVERSE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
LLM_ARCH_COMMAND_R,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
@@ -3847,6 +3868,16 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 80: model.type = e_model::MODEL_65B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_COMMAND_R:
{
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
@@ -5200,6 +5231,28 @@ static bool llm_load_tensors(
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
}
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+ auto & layer = model.layers[i];
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
case LLM_ARCH_COMMAND_R:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -5238,7 +5291,7 @@ static bool llm_load_tensors(
ml.done_getting_tensors();
- ml.init_mappings(true, &model.mlock_mmaps);
+ ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
model.mappings.reserve(ml.mappings.size());
// create the backend buffers
@@ -6411,6 +6464,111 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_xverse() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ // positions of the tokens in the KV cache
+ struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_falcon() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -9389,6 +9547,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_mamba();
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ result = llm.build_xverse();
+ } break;
case LLM_ARCH_COMMAND_R:
{
result = llm.build_command_r();
@@ -14188,6 +14350,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
+ case LLM_ARCH_XVERSE:
case LLM_ARCH_COMMAND_R:
return LLAMA_ROPE_TYPE_NORM;