diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-23 14:34:23 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-23 14:34:23 +0100 |
commit | 167479e0272dcb5f9babc7668664fa2a75c4f2dd (patch) | |
tree | c5347677e97acaa0da4ff619c01231afeda40488 | |
parent | 1a0a35dcd175a2b37fb6a347f69f31cb37eaf035 (diff) |
IQ3_S_R4 (#162)
* iq3_s_r4: WIP
* iq3_s_r4: Zen4
* iq3_s_r4: slightly better Zen4
* iq3_s_r4: AVX2
* iq3_s_r4: NEON
* iq3_s_r4: rearrange quants
* iq3_s_r4: rearranged quants - AVX2
* iq3_s_r4: rearranged quants - NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | examples/quantize/quantize.cpp | 1 | ||||
-rw-r--r-- | ggml/include/ggml.h | 2 | ||||
-rw-r--r-- | ggml/src/ggml-common.h | 9 | ||||
-rw-r--r-- | ggml/src/ggml-quants.c | 1 | ||||
-rw-r--r-- | ggml/src/ggml.c | 23 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 269 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 108 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.h | 6 | ||||
-rw-r--r-- | include/llama.h | 1 | ||||
-rw-r--r-- | src/llama.cpp | 21 |
10 files changed, 394 insertions, 47 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 1599405b..5ffdbc84 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -39,6 +39,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = { { "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", }, { "IQ3_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4,"IQ3_XXS repacked", }, { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", }, + { "IQ3_S_R4", LLAMA_FTYPE_MOSTLY_IQ3_S_R4, "IQ3_S repacked", }, { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, { "Q3_K_R4", LLAMA_FTYPE_MOSTLY_Q3_K_R4, "Q3_K_S repacked" }, diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 002388cb..5fd8324d 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -422,6 +422,7 @@ extern "C" { GGML_TYPE_IQ2_XS_R4 = 217, GGML_TYPE_IQ3_XXS_R4= 218, GGML_TYPE_IQ4_NL_R4 = 220, + GGML_TYPE_IQ3_S_R4 = 221, GGML_TYPE_IQ2_S_R4 = 222, GGML_TYPE_IQ4_XS_R4 = 223, GGML_TYPE_BF16_R16 = 230, @@ -504,6 +505,7 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_XS_R4 = 216, // except 1d tensors GGML_FTYPE_MOSTLY_IQ3_XXS_R4= 217, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_NL_R4 = 219, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ3_S_R4 = 220, // except 1d tensors GGML_FTYPE_MOSTLY_IQ2_S_R4 = 221, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_XS_R4 = 222, // except 1d tensors GGML_FTYPE_MOSTLY_BF16_R16 = 224, // except 1d tensors diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 6964f5e6..7f79b27b 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -465,6 +465,15 @@ typedef struct { static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); typedef struct { + ggml_half d[4]; + uint8_t qs[QK_K]; + uint8_t qh[QK_K/8]; + uint8_t signs[QK_K/2]; + uint8_t scales[4*IQ3S_N_SCALE]; +} block_iq3_s_r4; +static_assert(sizeof(block_iq3_s_r4) == 4*sizeof(block_iq3_s), "wrong iq3_s_r4 block size/padding"); + +typedef struct { ggml_half d; uint8_t qs[QK_K/8]; uint16_t qh[QK_K/32]; diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index bf028c0c..27d3f5c4 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -15201,6 +15201,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte case GGML_TYPE_IQ2_XXS_R4: break; case GGML_TYPE_IQ2_XS_R4: break; case GGML_TYPE_IQ3_XXS_R4: break; + case GGML_TYPE_IQ3_S_R4: break; case GGML_TYPE_IQ2_S_R4: break; case GGML_TYPE_Q4_0_R4: break; case GGML_TYPE_Q5_0_R4: break; diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 2cece547..71d84c94 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1083,6 +1083,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_IQ3_S_R4] = { + .type_name = "iq3_s_r4", + .blck_size = QK_K, + .type_size = sizeof(block_iq3_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq3_s_r4, + .from_float = quantize_row_iq3_s_r4, + .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_r4_ref, + .vec_dot = vec_dot_iq3_s_r4_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 0, + }, [GGML_TYPE_IQ2_S] = { .type_name = "iq2_s", .blck_size = QK_K, @@ -4282,6 +4295,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ5_K_R4: wtype = GGML_TYPE_IQ5_K_R4; break; case GGML_FTYPE_MOSTLY_IQ6_K: wtype = GGML_TYPE_IQ6_K; break; case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; + case GGML_FTYPE_MOSTLY_IQ3_S_R4: wtype = GGML_TYPE_IQ3_S_R4; break; case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; case GGML_FTYPE_MOSTLY_IQ2_S_R4: wtype = GGML_TYPE_IQ2_S_R4; break; case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break; @@ -10827,6 +10841,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -11291,6 +11306,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -11452,6 +11468,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -14659,6 +14676,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -15060,6 +15078,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -15355,6 +15374,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: @@ -15979,6 +15999,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ5_K_R4: case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q8_K: @@ -22731,6 +22752,7 @@ void ggml_quantize_init(enum ggml_type type) { case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break; case GGML_TYPE_IQ3_XXS_R4: case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break; + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break; default: // nothing break; @@ -22807,6 +22829,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_XXS_R4:result = quantize_iq3_xxs_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ3_S_R4:result = quantize_iq3_s_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_S_R4:result = quantize_iq2_s_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index cf4bd7ab..ca75e0fd 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -204,6 +204,7 @@ struct MulMat { case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ2_XXS_R4: case GGML_TYPE_IQ3_XXS_R4: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ2_BN_R4: return 4; case GGML_TYPE_Q8_K_R8: return 8; case GGML_TYPE_BF16_R16: return 16; @@ -3981,6 +3982,136 @@ static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const Dat } } +#ifdef HAVE_FANCY_SIMD +// Strangely enough, the following implementation makes PP ~6% slower and TG ~6% faster +// compared to the vanilla AVX2 version below. +struct IndexHelperIQ3S { + union index_t { + __m256i vec; + uint16_t val[16]; + }; + inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { + auto idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); + const __mmask16 * m16 = (const __mmask16 *)qh; + index_t idx; + idx.vec = _mm256_mask_add_epi16(idx_l, m16[0], idx_l, offset); + values[0] = _mm256_set_epi32(iq3s_grid[idx.val[ 7]], iq3s_grid[idx.val[ 6]], iq3s_grid[idx.val[ 5]], iq3s_grid[idx.val[ 4]], + iq3s_grid[idx.val[ 3]], iq3s_grid[idx.val[ 2]], iq3s_grid[idx.val[ 1]], iq3s_grid[idx.val[ 0]]); + values[1] = _mm256_set_epi32(iq3s_grid[idx.val[15]], iq3s_grid[idx.val[14]], iq3s_grid[idx.val[13]], iq3s_grid[idx.val[12]], + iq3s_grid[idx.val[11]], iq3s_grid[idx.val[10]], iq3s_grid[idx.val[ 9]], iq3s_grid[idx.val[ 8]]); + } + const __m256i offset = _mm256_set1_epi16(256); +}; +#else +struct IndexHelperIQ3S { + union index_t { + __m256i vec; + uint32_t val[8]; + }; + inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { + index_t idx; + auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); + auto idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[0]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[0] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)(qs+8))); + idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[1]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[1] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + } + const __m256i idx_mask = _mm256_set1_epi32(256); + const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); +}; +#endif + +template <int nrc_y> +static void mul_mat_iq3_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + auto smask = _mm256_set1_epi8(1); + union { __m256i vec; uint32_t val[8]; } helper; + union { __m128i vec; uint16_t val[8]; } hidx; + __m256 acc[nrc_y] = {}; + __m256i isum[nrc_y] = {}; + __m256i qx[4]; +#ifdef HAVE_FANCY_SIMD + __mmask32 mask[4]; +#endif + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq3[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto qs = iq3[ibl].qs; + auto qh = iq3[ibl].qh; + auto scale_bits = _mm_loadu_si128((const __m128i *)iq3[ibl].scales); + auto scales8 = MM256_SET_M128I(_mm_srli_epi16(scale_bits, 4), scale_bits); + helper.vec = _mm256_or_si256(_mm256_slli_epi16(_mm256_and_si256(scales8, _mm256_set1_epi8(0xf)), 1), _mm256_set1_epi8(1)); + for (int ib = 0; ib < QK_K/32; ++ib) { + auto qh32 = (const uint32_t *)qh; + auto idx_h = _mm_sllv_epi64(_mm_cvtepu8_epi16(_mm_set1_epi32(qh32[0])), _mm_set_epi64x(4, 8)); + for (int i = 0; i < 4; ++i) { + auto idx_l = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)(qs + 8*i))); + hidx.vec = _mm_or_si128(idx_l, _mm_and_si128(idx_h, _mm_set1_epi16(0x100))); idx_h = _mm_srli_epi16(idx_h, 1); + qx[i] = _mm256_set_epi32(iq3s_grid[hidx.val[7]], iq3s_grid[hidx.val[6]], iq3s_grid[hidx.val[5]], iq3s_grid[hidx.val[4]], + iq3s_grid[hidx.val[3]], iq3s_grid[hidx.val[2]], iq3s_grid[hidx.val[1]], iq3s_grid[hidx.val[0]]); + } + qs += 32; qh += 4; + auto signs128 = _mm_loadu_si128((const __m128i*)iq3[ibl].signs + ib); + auto signs = MM256_SET_M128I(_mm_srli_epi16(signs128, 4), signs128); +#ifdef HAVE_FANCY_SIMD + auto scales = _mm256_cvtepi8_epi32(_mm_set1_epi32(helper.val[ib])); + mask[0] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[1] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[2] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[3] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi = _mm256_setzero_si256(); + auto ys = _mm256_shuffle_epi32(y, 0x00); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_mask_sub_epi8(ys, mask[0], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0x55); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_mask_sub_epi8(ys, mask[1], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0xaa); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_mask_sub_epi8(ys, mask[2], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0xff); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_mask_sub_epi8(ys, mask[3], _mm256_setzero_si256(), ys)); + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(sumi, scales)); + } +#else + auto scales16 = _mm256_cvtepi8_epi16(_mm_set1_epi32(helper.val[ib])); + auto scales = _mm256_unpacklo_epi16(scales16, scales16); + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), s1))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), s2))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), s3))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), s4))); + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_madd_epi16(scales, sumi)); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + template <int nrc_y> static void mul_mat_q4_k_r4_q8_k_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); @@ -5785,50 +5916,6 @@ static void mul_mat_qX_K_q8_K_IQ(int n, const void * vx, size_t bx, const DataIn #endif } -//#ifdef HAVE_FANCY_SIMD -// Strangely enough, the following implementation makes PP ~6% slower and TG ~6% faster -// compared to the vanilla AVX2 version below. -//struct IndexHelperIQ3S { -// union index_t { -// __m256i vec; -// uint16_t val[16]; -// }; -// inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { -// auto idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); -// const __mmask16 * m16 = (const __mmask16 *)qh; -// index_t idx; -// idx.vec = _mm256_mask_add_epi16(idx_l, m16[0], idx_l, offset); -// values[0] = _mm256_set_epi32(iq3s_grid[idx.val[ 7]], iq3s_grid[idx.val[ 6]], iq3s_grid[idx.val[ 5]], iq3s_grid[idx.val[ 4]], -// iq3s_grid[idx.val[ 3]], iq3s_grid[idx.val[ 2]], iq3s_grid[idx.val[ 1]], iq3s_grid[idx.val[ 0]]); -// values[1] = _mm256_set_epi32(iq3s_grid[idx.val[15]], iq3s_grid[idx.val[14]], iq3s_grid[idx.val[13]], iq3s_grid[idx.val[12]], -// iq3s_grid[idx.val[11]], iq3s_grid[idx.val[10]], iq3s_grid[idx.val[ 9]], iq3s_grid[idx.val[ 8]]); -// } -// const __m256i offset = _mm256_set1_epi16(256); -//}; -//#else -struct IndexHelperIQ3S { - union index_t { - __m256i vec; - uint32_t val[8]; - }; - inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { - index_t idx; - auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); - auto idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[0]), idx_shift), idx_mask); - idx.vec = _mm256_or_si256(idx_h, idx_l); - values[0] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], - iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); - idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)(qs+8))); - idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[1]), idx_shift), idx_mask); - idx.vec = _mm256_or_si256(idx_h, idx_l); - values[1] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], - iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); - } - const __m256i idx_mask = _mm256_set1_epi32(256); - const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); -}; -//#endif - struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> { DequantizerIQ3S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} @@ -7438,6 +7525,19 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { mm.func16 = mul_mat_iq3_xxs_r4_q8_k<16>; expected_typeB = GGML_TYPE_Q8_K; break; + case GGML_TYPE_IQ3_S_R4: + assert (ne00 % QK_K == 0); + mm.funcs[0] = mul_mat_iq3_s_r4_q8_k<1>; + mm.funcs[1] = mul_mat_iq3_s_r4_q8_k<2>; + mm.funcs[2] = mul_mat_iq3_s_r4_q8_k<3>; + mm.funcs[3] = mul_mat_iq3_s_r4_q8_k<4>; + mm.funcs[4] = mul_mat_iq3_s_r4_q8_k<5>; + mm.funcs[5] = mul_mat_iq3_s_r4_q8_k<6>; + mm.funcs[6] = mul_mat_iq3_s_r4_q8_k<7>; + mm.funcs[7] = mul_mat_iq3_s_r4_q8_k<8>; + mm.func16 = mul_mat_iq3_s_r4_q8_k<16>; + expected_typeB = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q2_K_R4: assert (ne00 % QK_K == 0); mm.funcs[0] = mul_mat_q2_k_r4_q8_k<1>; @@ -10547,6 +10647,82 @@ static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const Dat } } +template <int nrc_y> +static void mul_mat_iq3_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[nrc_y] = {}; + int8x16_t qx[8]; + auto m1 = vdupq_n_u8(1); + auto shuff = vreinterpretq_u8_u32(uint32x4_t{0xffffff00, 0xffffff01, 0xffffff02, 0xffffff03}); + uint32_t stored_scales[8]; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq3[ibl].d)); + auto qs = iq3[ibl].qs; + auto qh = iq3[ibl].qh; + auto scale_bits = vld1q_u8(iq3[ibl].scales); + uint8x16x2_t scales8 = { vandq_u8(scale_bits, vdupq_n_u8(0xf)), vshrq_n_u8(scale_bits, 4) }; + scales8.val[0] = vorrq_u8(vshlq_n_u8(scales8.val[0], 1), m1); + scales8.val[1] = vorrq_u8(vshlq_n_u8(scales8.val[1], 1), m1); + vst1q_u8_x2((uint8_t *)stored_scales, scales8); + for (int ib = 0; ib < QK_K/32; ++ib) { + auto signs128 = vld1q_u8(iq3[ibl].signs+16*ib); + if constexpr (nrc_y == 1) { + auto qh32 = (const uint32_t *)qh; + auto idx_h = vreinterpretq_u16_u64(vshlq_u64(vreinterpretq_u64_u16(vmovl_u8(vreinterpret_u8_u32(vdup_n_u32(qh32[0])))), int64x2_t{8, 4})); + union { uint16x8_t vec; uint16_t val[8]; } hidx; + for (int i = 0; i < 4; ++i) { + auto idx_l = vmovl_u8(vld1_u8(qs)); + hidx.vec = vorrq_u16(idx_l, vandq_u16(idx_h, vdupq_n_u16(0x100))); idx_h = vshrq_n_u16(idx_h, 1); + qx[2*i+0] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[hidx.val[0]], iq3s_grid[hidx.val[1]], iq3s_grid[hidx.val[2]], iq3s_grid[hidx.val[3]]}); + auto signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(signs128, m1), m1), m1)); + qx[2*i+0] = vmulq_s8(qx[2*i+0], signs); + qx[2*i+1] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[hidx.val[4]], iq3s_grid[hidx.val[5]], iq3s_grid[hidx.val[6]], iq3s_grid[hidx.val[7]]}); + signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(vshrq_n_u8(signs128, 4), m1), m1), m1)); + qx[2*i+1] = vmulq_s8(qx[2*i+1], signs); + signs128 = vshrq_n_u8(signs128, 1); + qs += 8; + } + } else { + for (int i = 0; i < 4; ++i) { + qx[2*i+0] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[qs[0] | ((qh[0] << (8-i)) & 0x100)], iq3s_grid[qs[1] | ((qh[1] << (8-i)) & 0x100)], + iq3s_grid[qs[2] | ((qh[2] << (8-i)) & 0x100)], iq3s_grid[qs[3] | ((qh[3] << (8-i)) & 0x100)]}); + auto signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(signs128, m1), m1), m1)); + qx[2*i+0] = vmulq_s8(qx[2*i+0], signs); + + qx[2*i+1] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[qs[4] | ((qh[0] << (4-i)) & 0x100)], iq3s_grid[qs[5] | ((qh[1] << (4-i)) & 0x100)], + iq3s_grid[qs[6] | ((qh[2] << (4-i)) & 0x100)], iq3s_grid[qs[7] | ((qh[3] << (4-i)) & 0x100)]}); + signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(vshrq_n_u8(signs128, 4), m1), m1), m1)); + qx[2*i+1] = vmulq_s8(qx[2*i+1], signs); + + qs += 8; + signs128 = vshrq_n_u8(signs128, 1); + } + } + auto scales = vreinterpretq_s32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(vdupq_n_u32(stored_scales[ib])), shuff)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 32*ib); + auto sumi = interleaved_dotq(qx, y); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + qh += 4; + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy])); + isum[iy] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + template <int nrc_y, int k_shift> inline void iq3_4_add_shift(int ibl, const Q8<nrc_y, block_q8_K>& q8, const int8x16x4_t& i8scales, uint8x16_t extra, int32x4_t * isum) { @@ -11864,6 +12040,11 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { m.func16 = mul_mat_iq3_xxs_r4_q8_k<16>; expected_Btype = GGML_TYPE_Q8_K; break; + case GGML_TYPE_IQ3_S_R4: + SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq3_s_r4_q8_k); + m.func16 = mul_mat_iq3_s_r4_q8_k<16>; + expected_Btype = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q2_K_R4: SET_MUL_MAT_FUNCTIONS(m, mul_mat_q2_k_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K; diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 90417899..095235cd 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -5696,6 +5696,109 @@ void vec_dot_iq3_xxs_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_ GGML_UNUSED(by); } +// +// ========================================= iq3_s_r4 +// + +void quantize_row_iq3_s_r4_ref(const float * x, block_iq3_s_r4 * y, int64_t k) { + quantize_iq3_s_r4(x, (void *)y, 4, k/4, nullptr); +} + +void quantize_row_iq3_s_r4(const float * x, void * y, int64_t k) { + quantize_iq3_s_r4(x, y, 4, k/4, nullptr); +} + +static void repack_iq3_s(int nrows, int n_per_row, const block_iq3_s * x, block_iq3_s_r4 * y) { + GGML_ASSERT(nrows%4 == 0); + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + const block_iq3_s * x4[4]; + for (int row = 0; row < nrows; row += 4) { + for (int k = 0; k < 4; ++k) x4[k] = x + nblock*k; + for (int ibl = 0; ibl < nblock; ++ibl) { + std::memset(y[ibl].scales, 0, QK_K/16); + std::memset(y[ibl].signs, 0, QK_K/2); + std::memset(y[ibl].qh, 0, QK_K/8); + for (int k = 0; k < 4; ++k) { + y[ibl].d[k] = x4[k][ibl].d; + for (int ib = 0; ib < QK_K/64; ++ib) { + int j = 8*ib + k; + y[ibl].scales[(j+0)%16] |= ((x4[k][ibl].scales[ib] & 0xf) << 4*((j+0)/16)); + y[ibl].scales[(j+4)%16] |= ((x4[k][ibl].scales[ib] >> 4) << 4*((j+4)/16)); + } + for (int ib = 0; ib < QK_K/32; ++ib) { + y[ibl].qh[4*ib+k] = x4[k][ibl].qh[ib]; // leave ot like this? + for (int i = 0; i < 4; ++i) { + y[ibl].qs[32*ib+k+8*i+0] = x4[k][ibl].qs[8*ib+i+0]; + y[ibl].qs[32*ib+k+8*i+4] = x4[k][ibl].qs[8*ib+i+4]; + } + for (int i = 0; i < 4; ++i) { + y[ibl].signs[16*ib+4*k+i] = (((x4[k][ibl].signs[4*ib+0] >> i) & 1) << 0) | (((x4[k][ibl].signs[4*ib+0] >> (4+i)) & 1) << 1) | + (((x4[k][ibl].signs[4*ib+1] >> i) & 1) << 2) | (((x4[k][ibl].signs[4*ib+1] >> (4+i)) & 1) << 3) | + (((x4[k][ibl].signs[4*ib+2] >> i) & 1) << 4) | (((x4[k][ibl].signs[4*ib+2] >> (4+i)) & 1) << 5) | + (((x4[k][ibl].signs[4*ib+3] >> i) & 1) << 6) | (((x4[k][ibl].signs[4*ib+3] >> (4+i)) & 1) << 7); + } + } + } + } + x += 4*nblock; + y += nblock; + } +} + +size_t quantize_iq3_s_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(nrows%4 == 0); + GGML_ASSERT(n_per_row%QK_K == 0); + char * qcur = (char *)dst; + auto row_size = ggml_row_size(GGML_TYPE_IQ3_S, n_per_row); + std::vector<char> qtmp(4*row_size); + for (int row = 0; row < nrows; row += 4) { + quantize_iq3_s(src, (void *)qtmp.data(), 4, n_per_row, imatrix); + repack_iq3_s(4, n_per_row, (const block_iq3_s *)qtmp.data(), (block_iq3_s_r4 *)qcur); + qcur += 4*row_size; + src += 4*n_per_row; + } + return nrows*row_size; +} + +void dequantize_row_iq3_s_r4(const block_iq3_s_r4 * x, float * y, int64_t k) { + auto n_per_row = k/4; + float * y4[4] = {y, y + n_per_row, y + 2*n_per_row, y + 3*n_per_row}; + int nblock = n_per_row/QK_K; + for (int ibl = 0; ibl < nblock; ++ibl) { + for (int k = 0; k < 4; ++k) { + const float d = GGML_FP16_TO_FP32(x[ibl].d[k]); + for (int ib = 0; ib < QK_K/32; ++ib) { + int l = 4*ib + k; + float dl = d * (1 + 2*((x[ibl].scales[l%16] >> 4*(l/16)) & 0xf)); + for (int i = 0; i < 4; ++i) { + auto grid1 = (const uint8_t *)(iq3s_grid + x[ibl].qs[32*ib+k+8*i+0] + ((x[ibl].qh[4*ib+k] << (8-i)) & 0x100)); + auto grid2 = (const uint8_t *)(iq3s_grid + x[ibl].qs[32*ib+k+8*i+4] + ((x[ibl].qh[4*ib+k] << (4-i)) & 0x100)); + for (int j = 0; j < 4; ++j) { + y4[k][QK_K*ibl+32*ib+4*i+ 0+j] = dl * grid1[j] * (x[ibl].signs[16*ib+4*k+j] & (1 << (i+0)) ? -1 : 1); + y4[k][QK_K*ibl+32*ib+4*i+16+j] = dl * grid2[j] * (x[ibl].signs[16*ib+4*k+j] & (1 << (i+4)) ? -1 : 1); + } + } + } + } + } +} + +void vec_dot_iq3_s_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ3_S_R4, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + GGML_ASSERT(n%QK4_NL == 0); + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); +} + +//================================================ + void iqk_repack_tensor(struct ggml_tensor * tensor) { constexpr int kChunk = 8; if (!tensor) return; @@ -5711,6 +5814,11 @@ void iqk_repack_tensor(struct ggml_tensor * tensor) { { GGML_TYPE_IQ4_KS, { GGML_TYPE_IQ4_KS_R4, 4, (Repack::repack_func)repack_iq4_ks} }, { GGML_TYPE_IQ4_NL, { GGML_TYPE_IQ4_NL_R4, 4, (Repack::repack_func)repack_iq4_nl} }, { GGML_TYPE_IQ2_BN, { GGML_TYPE_IQ2_BN_R4, 4, (Repack::repack_func)repack_iq2_bn} }, + { GGML_TYPE_IQ2_XXS,{ GGML_TYPE_IQ2_XXS_R4,4, (Repack::repack_func)repack_iq2_xxs} }, + { GGML_TYPE_IQ2_XS, { GGML_TYPE_IQ2_XS_R4, 4, (Repack::repack_func)repack_iq2_xs} }, + { GGML_TYPE_IQ2_S, { GGML_TYPE_IQ2_S_R4, 4, (Repack::repack_func)repack_iq2_s} }, + { GGML_TYPE_IQ3_XXS,{ GGML_TYPE_IQ3_XXS_R4,4, (Repack::repack_func)repack_iq3_xxs} }, + { GGML_TYPE_IQ3_S, { GGML_TYPE_IQ3_S_R4, 4, (Repack::repack_func)repack_iq3_s} }, { GGML_TYPE_Q2_K, { GGML_TYPE_Q2_K_R4, 4, (Repack::repack_func)repack_q2_k} }, { GGML_TYPE_Q3_K, { GGML_TYPE_Q3_K_R4, 4, (Repack::repack_func)repack_q3_k} }, { GGML_TYPE_Q4_K, { GGML_TYPE_Q4_K_R4, 4, (Repack::repack_func)repack_q4_k} }, diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h index f62f055a..70df2dcd 100644 --- a/ggml/src/iqk/iqk_quantize.h +++ b/ggml/src/iqk/iqk_quantize.h @@ -193,6 +193,12 @@ size_t quantize_iq3_xxs_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT void dequantize_row_iq3_xxs_r4(const block_iq3_xxs_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void vec_dot_iq3_xxs_r4_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void quantize_row_iq3_s_r4_ref(const float * GGML_RESTRICT x, block_iq3_s_r4 * GGML_RESTRICT y, int64_t k); +void quantize_row_iq3_s_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +size_t quantize_iq3_s_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +void dequantize_row_iq3_s_r4(const block_iq3_s_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void vec_dot_iq3_s_r4_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void quantize_row_q8_k_r8_ref(const float * GGML_RESTRICT x, block_q8_k_r8 * GGML_RESTRICT y, int64_t k); void quantize_row_q8_k_r8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); size_t quantize_q8_k_r8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); diff --git a/include/llama.h b/include/llama.h index b7822307..f5f3b8bf 100644 --- a/include/llama.h +++ b/include/llama.h @@ -192,6 +192,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 = 220, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 = 223, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 = 225, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_S_R4 = 226, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ2_M_R4 = 229, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 = 230, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q6_0_R4 = 335, // except 1d tensors diff --git a/src/llama.cpp b/src/llama.cpp index 42193411..37653478 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -3884,6 +3884,7 @@ struct llama_model_loader { case GGML_TYPE_IQ5_K_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ5_K_R4;break; case GGML_TYPE_IQ6_K: ftype = LLAMA_FTYPE_MOSTLY_IQ6_K; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; + case GGML_TYPE_IQ3_S_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ3_S_R4;break; case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break; case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break; case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break; @@ -4618,6 +4619,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_IQ2_BN: return "IQ2_BN - 2.00 bpw Bitnet"; case LLAMA_FTYPE_MOSTLY_IQ2_BN_R4:return "IQ2_BN_R4 - 2.00 bpw Bitnet"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_S_R4: return "IQ3_S_R4 - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4"; case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8"; @@ -15807,7 +15809,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { new_type = !qs.has_output ? GGML_TYPE_IQ4_K_R4 : GGML_TYPE_Q5_K_R4; } - else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS_R4) && !qs.has_output) { new_type = GGML_TYPE_IQ5_K; } @@ -15871,6 +15873,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if (new_type == GGML_TYPE_IQ3_K_R4) { new_type = GGML_TYPE_IQ3_K; } + else if (new_type == GGML_TYPE_IQ3_S_R4) { + new_type = GGML_TYPE_IQ3_S; + } else if (new_type == GGML_TYPE_IQ4_K_R4) { new_type = GGML_TYPE_IQ4_K; } @@ -15955,6 +15960,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 2) { new_type = GGML_TYPE_IQ4_K; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S_R4 && qs.model.hparams.n_gqa() >= 2) { + new_type = GGML_TYPE_IQ4_K_R4; + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_K && qs.model.hparams.n_gqa() >= 2) { new_type = GGML_TYPE_IQ4_K; } @@ -16008,6 +16016,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (new_type == GGML_TYPE_Q2_K_R4 || new_type == GGML_TYPE_IQ3_XXS_R4) new_type = GGML_TYPE_IQ3_K_R4; else if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_IQ3_S ) new_type = GGML_TYPE_Q4_K; + else if (new_type == GGML_TYPE_IQ3_S_R4) new_type = GGML_TYPE_Q4_K_R4; else if (new_type == GGML_TYPE_Q3_K_R4) new_type = GGML_TYPE_Q4_K_R4; else if (new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_IQ4_XS) new_type = GGML_TYPE_Q5_K; else if (new_type == GGML_TYPE_IQ4_NL) new_type = GGML_TYPE_Q5_K; @@ -16119,7 +16128,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_R4|| ftype == LLAMA_FTYPE_MOSTLY_IQ4_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S_R4) { new_type = GGML_TYPE_Q5_K; } } else { @@ -16195,7 +16204,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4|| new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4 || new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4 || - new_type == GGML_TYPE_IQ2_S_R4) { + new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ3_S_R4) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { @@ -16223,6 +16232,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_XXS_R4: case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_S_R4: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_Q2_K: @@ -16384,6 +16394,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_IQ5_K_R4:default_type = GGML_TYPE_IQ5_K_R4;break; case LLAMA_FTYPE_MOSTLY_IQ6_K: default_type = GGML_TYPE_IQ6_K; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; + case LLAMA_FTYPE_MOSTLY_IQ3_S_R4:default_type = GGML_TYPE_IQ3_S_R4;break; case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break; case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break; @@ -16825,6 +16836,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_XXS; else chunk_size_multiplier = 4; } + else if (new_type == GGML_TYPE_IQ3_S_R4) { + if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_S; + else chunk_size_multiplier = 4; + } else if (new_type == GGML_TYPE_BF16_R16) { if (tensor->ne[1] % 16 != 0) new_type = GGML_TYPE_BF16; else chunk_size_multiplier = 16; |