summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-10-24 16:48:37 +0300
committerGitHub <noreply@github.com>2023-10-24 16:48:37 +0300
commit2b4ea35e56792064598e922e46d081e02bc96b94 (patch)
treedea0a7b3e47c7d876cbce5d30b31c4c78d7bb030
parentdaab3d7f45832e10773c99f3484b0d5b14d86c0c (diff)
cuda : add batched cuBLAS GEMM for faster attention (#3749)
* cmake : add helper for faster CUDA builds * batched : add NGL arg * ggml : skip nops in compute_forward * cuda : minor indentation * cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops) * Apply suggestions from code review These changes plus: ```c++ #define cublasGemmBatchedEx hipblasGemmBatchedEx ``` are needed to compile with ROCM. I haven't done performance testing, but it seems to work. I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up. * cuda : add ROCm / hipBLAS cublasGemmBatchedEx define * cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases * cuda : reduce mallocs in cublasGemmBatchedEx branch * cuda : add TODO for calling cublas from kernel + using mem pool --------- Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
-rw-r--r--CMakeLists.txt1
-rw-r--r--examples/batched/batched.cpp11
-rw-r--r--ggml-cuda.cu190
-rw-r--r--ggml.c4
4 files changed, 193 insertions, 13 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 6af42a6c..202f2604 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -331,6 +331,7 @@ if (LLAMA_CUBLAS)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
else()
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
+ #set(CMAKE_CUDA_ARCHITECTURES "") # use this to compile much faster, but only F16 models work
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp
index 75856a81..22a4265d 100644
--- a/examples/batched/batched.cpp
+++ b/examples/batched/batched.cpp
@@ -11,7 +11,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
- printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN]\n" , argv[0]);
+ printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
return 1 ;
}
@@ -21,6 +21,9 @@ int main(int argc, char ** argv) {
// total length of the sequences including the prompt
int n_len = 32;
+ // number of layers to offload to the GPU
+ int n_gpu_layers = 0;
+
if (argc >= 2) {
params.model = argv[1];
}
@@ -37,6 +40,10 @@ int main(int argc, char ** argv) {
n_len = std::atoi(argv[4]);
}
+ if (argc >= 6) {
+ n_gpu_layers = std::atoi(argv[5]);
+ }
+
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
@@ -49,7 +56,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
- // model_params.n_gpu_layers = 99; // offload all layers to the GPU
+ model_params.n_gpu_layers = n_gpu_layers;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 654d3632..db053e3b 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -29,6 +29,8 @@
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasCreate hipblasCreate
#define cublasGemmEx hipblasGemmEx
+#define cublasGemmBatchedEx hipblasGemmBatchedEx
+#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
@@ -4326,13 +4328,13 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+ const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
+ const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
+ const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
- const int row_dst = row_x;
+ const int row_dst = row_x;
const int idst = channel*nrows_dst + row_dst;
@@ -4345,13 +4347,13 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
break;
}
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const float xi = __half2float(x[ix]);
-
const int row_y = col_x;
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const int iy = channel*nrows_y + row_y;
+ const float xi = __half2float(x[ix]);
+
tmp += xi * y[iy];
}
@@ -7013,7 +7015,8 @@ static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tens
}
static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
@@ -7023,11 +7026,11 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
-
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
+ const int64_t ne12 = src1->ne[2];
+
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
@@ -7046,6 +7049,159 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}
+static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
+ GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t nb01 = src0->nb[1];
+ const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
+ const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+
+ const int64_t nb11 = src1->nb[1];
+ const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
+ const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
+
+ const int64_t ne1 = ggml_nelements(src1);
+ const int64_t ne = ggml_nelements(dst);
+
+ CUDA_CHECK(ggml_cuda_set_device(g_main_device));
+ cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], main_stream));
+
+ ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+ void * src0_ddq = src0_extra->data_device[g_main_device];
+ half * src0_as_f16 = (half *) src0_ddq;
+
+ ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+ float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
+
+ ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+ float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
+
+ // convert src1 to fp16
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+
+ size_t src1_as = 0;
+ half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
+ to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
+
+ size_t dst_as = 0;
+ half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
+
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
+
+ // broadcast factors
+ const int64_t r2 = ne12/ne02;
+ const int64_t r3 = ne13/ne03;
+
+ const half alpha_f16 = 1.0f;
+ const half beta_f16 = 0.0f;
+
+#if 0
+ // use cublasGemmEx
+ {
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ int i03 = i13 / r3;
+ int i02 = i12 / r2;
+
+ CUBLAS_CHECK(
+ cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
+ (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
+ &beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01,
+ CUBLAS_COMPUTE_16F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ }
+ }
+ }
+#else
+ if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
+ // there is no broadcast and src0, src1 are contiguous across dims 2, 3
+ // use cublasGemmStridedBatchedEx
+ CUBLAS_CHECK(
+ cublasGemmStridedBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
+ (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
+ &beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC
+ ne12*ne13,
+ CUBLAS_COMPUTE_16F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ } else {
+ // use cublasGemmBatchedEx
+ // TODO: https://github.com/ggerganov/llama.cpp/pull/3749#discussion_r1369997000
+ const int ne23 = ne12*ne13;
+
+ // TODO: avoid this alloc
+ void ** ptrs = (void **) malloc(3*ne23*sizeof(void *));
+
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ int i03 = i13 / r3;
+ int i02 = i12 / r2;
+
+ ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3];
+ ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2;
+ ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2;
+ }
+ }
+
+ // allocate device memory for pointers
+ void ** ptrs_as = nullptr;
+ CUDA_CHECK(cudaMalloc(&ptrs_as, 3*ne23*sizeof(void *)));
+
+ // TODO: this does not work for some reason -- not sure why?
+ //size_t ptrs_s = 0;
+ //ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
+
+ // copy pointers to device
+ CUDA_CHECK(cudaMemcpy(ptrs_as, ptrs, 3*ne23*sizeof(void *), cudaMemcpyHostToDevice));
+
+ free(ptrs);
+
+ CUBLAS_CHECK(
+ cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha_f16, (const void **) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
+ (const void **) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
+ &beta_f16, ( void **) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
+ ne23,
+ CUBLAS_COMPUTE_16F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+
+ // free device memory for pointers
+ CUDA_CHECK(cudaFree(ptrs_as));
+ //ggml_cuda_pool_free(ptrs_as, ptrs_s);
+ }
+#endif
+
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+ to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
+
+ ggml_cuda_pool_free(src1_as_f16, src1_as);
+ ggml_cuda_pool_free(dst_f16, dst_as);
+}
+
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
@@ -7058,10 +7214,22 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
}
}
+ // debug helpers
+ //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
+ //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
+ //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
+ //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
+ //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
+ //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
+
if (all_on_device && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+ // KQ
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
+ } else if (all_on_device && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+ // KQV
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
+ } else if (all_on_device && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
+ ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
diff --git a/ggml.c b/ggml.c
index 49f3b7ab..17f0ce48 100644
--- a/ggml.c
+++ b/ggml.c
@@ -16602,6 +16602,10 @@ static void ggml_compute_forward_cross_entropy_loss_back(
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
GGML_ASSERT(params);
+ if (tensor->op == GGML_OP_NONE) {
+ return;
+ }
+
#ifdef GGML_USE_CUBLAS
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
if (skip_cpu) {