summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorUzo Nweke <uzoechi@gmail.com>2024-01-19 13:20:50 -0500
committerGitHub <noreply@github.com>2024-01-19 20:20:50 +0200
commit381ee195721d8e747ee31a60c0751822b3072f02 (patch)
treecdf6f6450351fbb0e7db12d6344c2f1d75acb50e
parenta5cacb22b2114fd9adf61c00cbb237384d86bced (diff)
finetune : fix ggml_allocr lifetimes (tmp workaround) (#5033)
* Fix issue with alloc causing max_compute_size to be calculated * remove ggml_allocr_free as suggested in issue #4791
-rw-r--r--examples/train-text-from-scratch/train-text-from-scratch.cpp4
1 files changed, 0 insertions, 4 deletions
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
index 4a9a2340..eee9d4de 100644
--- a/examples/train-text-from-scratch/train-text-from-scratch.cpp
+++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp
@@ -263,7 +263,6 @@ static void init_model(struct my_llama_model * model) {
model->data.resize(size + tensor_alignment);
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
alloc_model(alloc, model);
- ggml_allocr_free(alloc);
}
static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
@@ -1102,7 +1101,6 @@ int main(int argc, char ** argv) {
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc, tokens_input);
ggml_allocr_alloc(alloc, target_probs);
- ggml_allocr_free(alloc);
// context for compute tensors without their data
const size_t estimated_compute_size_wo_data = (
@@ -1149,7 +1147,6 @@ int main(int argc, char ** argv) {
best_compute_size = max_compute_size;
best_order = gf->order;
}
- ggml_allocr_free(alloc);
ggml_free(ctx_compute);
}
size_t max_compute_size = best_compute_size;
@@ -1177,7 +1174,6 @@ int main(int argc, char ** argv) {
params.common.use_flash,
params.common.use_checkpointing
);
- ggml_allocr_free(alloc);
std::vector<llama_token> train_tokens;
std::vector<size_t> train_samples_begin;