summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMeng Zhang <meng@tabbyml.com>2023-11-06 22:49:08 -0800
committerGitHub <noreply@github.com>2023-11-07 08:49:08 +0200
commit46876d2a2c92e60579dc732cdb8cbd243b06f317 (patch)
tree8387e95867f96505ccbc909133eaa189e479db32
parent381efbf480959bb6d1e247a8b0c2328f22e350f8 (diff)
cuda : supports running on CPU for GGML_USE_CUBLAS=ON build (#3946)
* protyping the idea that supports running on CPU for a GGML_USE_CUBLAS=on build * doc: add comments to ggml_cublas_loaded() * fix defined(...)
-rw-r--r--ggml-cuda.cu17
-rw-r--r--ggml-cuda.h5
-rw-r--r--llama.cpp179
3 files changed, 126 insertions, 75 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 2d9ffffb..f87f1880 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -5790,6 +5790,11 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
CUDA_CHECK(cudaFree(ptr));
}
+static bool g_cublas_loaded = false;
+
+bool ggml_cublas_loaded(void) {
+ return g_cublas_loaded;
+}
void ggml_init_cublas() {
static bool initialized = false;
@@ -5803,7 +5808,12 @@ void ggml_init_cublas() {
CUDA_CHECK(cudaDeviceSynchronize());
#endif
- CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
+ if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
+ initialized = true;
+ g_cublas_loaded = false;
+ return;
+ }
+
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0;
#if defined(GGML_CUDA_FORCE_MMQ)
@@ -5851,6 +5861,7 @@ void ggml_init_cublas() {
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
initialized = true;
+ g_cublas_loaded = true;
}
}
@@ -7158,6 +7169,8 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
}
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ if (!g_cublas_loaded) return false;
+
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
@@ -7843,6 +7856,8 @@ void ggml_cuda_free_scratch() {
}
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
+ if (!g_cublas_loaded) return false;
+
ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
diff --git a/ggml-cuda.h b/ggml-cuda.h
index 57adc9cf..528e66c3 100644
--- a/ggml-cuda.h
+++ b/ggml-cuda.h
@@ -17,7 +17,12 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
+// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
GGML_API void ggml_init_cublas(void);
+
+// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
+GGML_API bool ggml_cublas_loaded(void);
+
GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr);
diff --git a/llama.cpp b/llama.cpp
index e1653900..d220ff3e 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -596,19 +596,37 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
// llama helpers
//
+inline void * llama_host_malloc(size_t n) {
#ifdef GGML_USE_CUBLAS
-# define llama_host_malloc(n) ggml_cuda_host_malloc(n)
-# define llama_host_free(data) ggml_cuda_host_free(data)
+ if (ggml_cublas_loaded()) {
+ return ggml_cuda_host_malloc(n);
+ } else {
+ return malloc(n);
+ }
#elif GGML_USE_METAL
-# define llama_host_malloc(n) ggml_metal_host_malloc(n)
-# define llama_host_free(data) ggml_metal_host_free(data)
+ return ggml_metal_host_malloc(n);
#elif GGML_USE_CPU_HBM
-# define llama_host_malloc(n) hbw_malloc(n)
-# define llama_host_free(data) if (data != NULL) hbw_free(data)
+ return hbw_malloc(n);
#else
-# define llama_host_malloc(n) malloc(n)
-# define llama_host_free(data) free(data)
+ return malloc(n);
#endif
+}
+
+inline void llama_host_free(void * ptr) {
+#ifdef GGML_USE_CUBLAS
+ if (ggml_cublas_loaded()) {
+ return ggml_cuda_host_free(ptr);
+ } else {
+ return free(ptr);
+ }
+#elif GGML_USE_METAL
+ return ggml_metal_host_free(ptr);
+#elif GGML_USE_CPU_HBM
+ return hbw_free(ptr);
+#else
+ return free(ptr);
+#endif
+}
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
@@ -1200,9 +1218,11 @@ struct llama_kv_cache {
}
#ifdef GGML_USE_CUBLAS
- ggml_cuda_free_data(k);
- ggml_cuda_free_data(v);
-#endif // GGML_USE_CUBLAS
+ if (ggml_cublas_loaded()) {
+ ggml_cuda_free_data(k);
+ ggml_cuda_free_data(v);
+ }
+#endif
}
};
@@ -1302,11 +1322,15 @@ struct llama_model {
}
#ifdef GGML_USE_CUBLAS
- for (size_t i = 0; i < tensors_by_name.size(); ++i) {
- ggml_cuda_free_data(tensors_by_name[i].second);
+ if (ggml_cublas_loaded()) {
+ for (size_t i = 0; i < tensors_by_name.size(); ++i) {
+ ggml_cuda_free_data(tensors_by_name[i].second);
+ }
+ ggml_cuda_free_scratch();
}
- ggml_cuda_free_scratch();
-#elif defined(GGML_USE_CLBLAST)
+#endif
+
+#if defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
@@ -1418,23 +1442,26 @@ static bool llama_kv_cache_init(
ggml_set_name(cache.v, "cache_v");
(void) n_gpu_layers;
+
#ifdef GGML_USE_CUBLAS
- size_t vram_kv_cache = 0;
+ if (ggml_cublas_loaded()) {
+ size_t vram_kv_cache = 0;
- if (n_gpu_layers > (int)n_layer + 1) {
- ggml_cuda_assign_buffers_no_scratch(cache.v);
- LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
- vram_kv_cache += ggml_nbytes(cache.v);
- }
- if (n_gpu_layers > (int)n_layer + 2) {
- ggml_cuda_assign_buffers_no_scratch(cache.k);
- LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
- vram_kv_cache += ggml_nbytes(cache.k);
- }
- if (vram_kv_cache > 0) {
- LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
+ if (n_gpu_layers > (int)n_layer + 1) {
+ ggml_cuda_assign_buffers_no_scratch(cache.v);
+ LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
+ vram_kv_cache += ggml_nbytes(cache.v);
+ }
+ if (n_gpu_layers > (int)n_layer + 2) {
+ ggml_cuda_assign_buffers_no_scratch(cache.k);
+ LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
+ vram_kv_cache += ggml_nbytes(cache.k);
+ }
+ if (vram_kv_cache > 0) {
+ LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
+ }
}
-#endif // GGML_USE_CUBLAS
+#endif
return true;
}
@@ -2521,18 +2548,22 @@ static void llm_load_tensors(
}
(void) main_gpu;
+
+ enum ggml_backend_type llama_backend_offload = GGML_BACKEND_CPU;
+ enum ggml_backend_type llama_backend_offload_split = GGML_BACKEND_CPU;
+
#ifdef GGML_USE_CUBLAS
- LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
- ggml_cuda_set_main_device(main_gpu);
-#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
+ if (ggml_cublas_loaded()) {
+ LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
+ ggml_cuda_set_main_device(main_gpu);
+
+ llama_backend_offload = GGML_BACKEND_GPU;
+ llama_backend_offload_split = GGML_BACKEND_GPU_SPLIT;
+ }
#elif defined(GGML_USE_CLBLAST)
- LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
-#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
-#else
-#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
+ LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
+ llama_backend_offload = GGML_BACKEND_GPU;
+ llama_backend_offload_split = GGML_BACKEND_GPU;
#endif
// prepare memory for the weights
@@ -2559,12 +2590,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2588,8 +2619,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
@@ -2625,12 +2656,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2654,8 +2685,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
@@ -2695,12 +2726,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2726,8 +2757,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
@@ -2772,12 +2803,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2803,8 +2834,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
@@ -2849,12 +2880,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2877,8 +2908,8 @@ static void llm_load_tensors(
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload;
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split;
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
@@ -2915,12 +2946,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -2946,8 +2977,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
@@ -2993,12 +3024,12 @@ static void llm_load_tensors(
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
- backend_norm = LLAMA_BACKEND_OFFLOAD;
+ backend_norm = llama_backend_offload;
#else
- backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
@@ -3022,8 +3053,8 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];