summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPierrick Hymbert <pierrick.hymbert@gmail.com>2024-02-24 12:28:55 +0100
committerGitHub <noreply@github.com>2024-02-24 12:28:55 +0100
commit525213d2f5da1eaf4b922b6b792cb52b2c613368 (patch)
tree8400e8a97d231b13a2df0c9d8b7c8fa945d24d5e
parentfd43d66f46ee3b5345fb8a74a252d86ccd34a409 (diff)
server: init functional tests (#5566)
* server: tests: init scenarios - health and slots endpoints - completion endpoint - OAI compatible chat completion requests w/ and without streaming - completion multi users scenario - multi users scenario on OAI compatible endpoint with streaming - multi users with total number of tokens to predict exceeds the KV Cache size - server wrong usage scenario, like in Infinite loop of "context shift" #3969 - slots shifting - continuous batching - embeddings endpoint - multi users embedding endpoint: Segmentation fault #5655 - OpenAI-compatible embeddings API - tokenize endpoint - CORS and api key scenario * server: CI GitHub workflow --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
-rw-r--r--.github/ISSUE_TEMPLATE/bug.md2
-rw-r--r--.github/workflows/server.yml127
-rw-r--r--examples/server/README.md6
-rw-r--r--examples/server/server.cpp36
-rw-r--r--examples/server/tests/README.md46
-rw-r--r--examples/server/tests/features/environment.py67
-rw-r--r--examples/server/tests/features/issues.feature36
-rw-r--r--examples/server/tests/features/parallel.feature77
-rw-r--r--examples/server/tests/features/security.feature50
-rw-r--r--examples/server/tests/features/server.feature69
-rw-r--r--examples/server/tests/features/steps/steps.py709
-rw-r--r--examples/server/tests/features/wrong_usages.feature21
-rw-r--r--examples/server/tests/requirements.txt3
-rwxr-xr-xexamples/server/tests/tests.sh12
14 files changed, 1243 insertions, 18 deletions
diff --git a/.github/ISSUE_TEMPLATE/bug.md b/.github/ISSUE_TEMPLATE/bug.md
index ce69e639..49812832 100644
--- a/.github/ISSUE_TEMPLATE/bug.md
+++ b/.github/ISSUE_TEMPLATE/bug.md
@@ -7,3 +7,5 @@ assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
+
+If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).
diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml
new file mode 100644
index 00000000..ed27dc52
--- /dev/null
+++ b/.github/workflows/server.yml
@@ -0,0 +1,127 @@
+# Server build and tests
+name: Server
+
+on:
+ workflow_dispatch: # allows manual triggering
+ push:
+ branches:
+ - master
+ - test/server-add-ci-test # FIXME remove
+ paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
+ pull_request:
+ types: [opened, synchronize, reopened]
+ paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
+
+jobs:
+ server:
+ runs-on: ubuntu-latest
+
+ strategy:
+ matrix:
+ build: [noavx, avx2, avx, avx512, cublas, clblast, openblas, kompute, vulkan]
+ sanitizer: [ADDRESS, THREAD, UNDEFINED]
+ build_type: [Debug, Release]
+ include:
+ - build: 'noavx'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
+ image: ubuntu:latest
+ - build: 'avx2'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
+ image: ubuntu:latest
+ - build: 'avx'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF'
+ image: ubuntu:latest
+ - build: 'avx512'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON'
+ image: ubuntu:latest
+ experimental: true
+ - build: 'cublas'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON'
+ image: nvidia/cuda:12.3.1-devel-ubuntu22.04
+ arch_not_available: true # require nvidia docker engine
+ - build: 'clblast'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON'
+ image: ubuntu:latest
+ arch_not_available: true
+ - build: 'openblas'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS'
+ image: ubuntu:latest
+ - build: 'kompute'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
+ image: ubuntu:latest
+ arch_not_available: true
+ - build: 'vulkan'
+ defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON'
+ image: ubuntu:latest
+ arch_not_available: true
+
+ container:
+ image: ${{ matrix.image }}
+ ports:
+ - 8888
+ options: --cpus 4
+
+ steps:
+ - name: Clone
+ id: checkout
+ uses: actions/checkout@v3
+
+ - name: Dependencies
+ id: depends
+ run: |
+ apt-get update
+ apt-get -y install \
+ build-essential \
+ pkg-config \
+ git \
+ cmake \
+ python3-pip \
+ wget \
+ psmisc
+
+ - name: Download CLBlast
+ id: get_clblast
+ if: ${{ matrix.build == 'clblast' }}
+ run: |
+ apt install -y libclblast-dev
+
+ - name: Download OpenBLAS
+ id: get_openblas
+ if: ${{ matrix.build == 'openblas' }}
+ run: |
+ apt-get -y install libopenblas-dev
+
+ - name: Install Vulkan SDK
+ id: get_vulkan
+ if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
+ run: |
+ wget -qO- https://packages.lunarg.com/lunarg-signing-key-pub.asc | tee /etc/apt/trusted.gpg.d/lunarg.asc
+ wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list http://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
+ apt-get update
+ apt-get -y install vulkan-sdk
+
+ - name: Build
+ id: cmake_build
+ run: |
+ mkdir build
+ cd build
+ cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ${{ matrix.defines }}
+ cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
+
+ - name: Tests dependencies
+ id: test_dependencies
+ run: |
+ pip install -r examples/server/tests/requirements.txt
+
+ - name: Download models
+ id: download_models
+ run: |
+ cd examples/server/tests
+ ../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf
+
+ - name: Tests
+ id: server_integration_test
+ continue-on-error: ${{ matrix.experimental || matrix.arch_not_available }}
+ run: |
+ cd examples/server/tests
+ PORT=8888 ./tests.sh
diff --git a/examples/server/README.md b/examples/server/README.md
index 4b6cd832..0c43ac4c 100644
--- a/examples/server/README.md
+++ b/examples/server/README.md
@@ -98,6 +98,12 @@ curl --request POST \
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
```
+## Advanced testing
+
+We implemented a [server test framework](./tests/README.md) using human-readable scenario.
+
+*Before submitting an issue, please try to reproduce it with this format.*
+
## Node JS Test
You need to have [Node.js](https://nodejs.org/en) installed.
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
index 524d0ada..9fb436c2 100644
--- a/examples/server/server.cpp
+++ b/examples/server/server.cpp
@@ -1410,11 +1410,6 @@ struct llama_server_context
int n_processing_slots = 0;
for (llama_client_slot &slot: slots) {
- if (slot.available()) {
- n_idle_slots++;
- } else {
- n_processing_slots++;
- }
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["task_id"] = slot.task_id;
@@ -1429,6 +1424,11 @@ struct llama_server_context
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
};
+ if (slot_data["state"] == IDLE) {
+ n_idle_slots++;
+ } else {
+ n_processing_slots++;
+ }
slots_data.push_back(slot_data);
}
LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
@@ -2748,19 +2748,6 @@ int main(int argc, char **argv)
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
}
- LOG_INFO("HTTP server listening", log_data);
- // run the HTTP server in a thread - see comment below
- std::thread t([&]()
- {
- if (!svr.listen_after_bind())
- {
- state.store(SERVER_STATE_ERROR);
- return 1;
- }
-
- return 0;
- });
-
// load the model
if (!llama.load_model(params))
{
@@ -3228,6 +3215,19 @@ int main(int argc, char **argv)
}*/
//);
+ LOG_INFO("HTTP server listening", log_data);
+ // run the HTTP server in a thread - see comment below
+ std::thread t([&]()
+ {
+ if (!svr.listen_after_bind())
+ {
+ state.store(SERVER_STATE_ERROR);
+ return 1;
+ }
+
+ return 0;
+ });
+
llama.queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
llama.queue_tasks.on_finish_multitask(std::bind(
diff --git a/examples/server/tests/README.md b/examples/server/tests/README.md
new file mode 100644
index 00000000..e44c5c28
--- /dev/null
+++ b/examples/server/tests/README.md
@@ -0,0 +1,46 @@
+# Server tests
+
+Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
+ * [issues.feature](./features/issues.feature) Pending issues scenario
+ * [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
+ * [security.feature](./features/security.feature) Security, CORS and API Key
+ * [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
+
+Tests target GitHub workflows job runners with 4 vCPU.
+
+Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
+
+Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
+
+### Install dependencies
+`pip install -r requirements.txt`
+
+### Run tests
+1. Build the server
+```shell
+cd ../../..
+mkdir build
+cd build
+cmake ../
+cmake --build . --target server
+```
+2. download required models:
+ 1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
+3. Start the test: `./tests.sh`
+
+It's possible to override some scenario steps values with environment variables:
+ - `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
+ - `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
+ - `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
+
+### Run @bug, @wip or @wrong_usage annotated scenario
+
+Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
+- `@bug` annotation aims to link a scenario with a GitHub issue.
+- `@wrong_usage` are meant to show user issue that are actually an expected behavior
+- `@wip` to focus on a scenario working in progress
+
+To run a scenario annotated with `@bug`, start:
+`DEBUG=ON ./tests.sh --no-skipped --tags bug`
+
+After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
diff --git a/examples/server/tests/features/environment.py b/examples/server/tests/features/environment.py
new file mode 100644
index 00000000..13cc8410
--- /dev/null
+++ b/examples/server/tests/features/environment.py
@@ -0,0 +1,67 @@
+import os
+import socket
+import subprocess
+import time
+from contextlib import closing
+from signal import SIGKILL
+
+
+def before_scenario(context, scenario):
+ print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
+ port = 8080
+ if 'PORT' in os.environ:
+ port = int(os.environ['PORT'])
+ if is_server_listening("localhost", port):
+ assert False, "Server already started"
+
+
+def after_scenario(context, scenario):
+ if scenario.status == "failed":
+ if 'GITHUB_ACTIONS' in os.environ:
+ print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
+ if os.path.isfile('llama.log'):
+ with closing(open('llama.log', 'r')) as f:
+ for line in f:
+ print(line)
+ if not is_server_listening(context.server_fqdn, context.server_port):
+ print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
+
+ if not pid_exists(context.server_process.pid):
+ assert False, f"Server not running pid={context.server_process.pid} ..."
+
+ print(f"stopping server pid={context.server_process.pid} ...")
+ context.server_process.kill()
+ # Wait few for socket to free up
+ time.sleep(0.05)
+
+ attempts = 0
+ while is_server_listening(context.server_fqdn, context.server_port):
+ print(f"stopping server pid={context.server_process.pid} ...")
+ os.kill(context.server_process.pid, SIGKILL)
+ time.sleep(0.1)
+ attempts += 1
+ if attempts > 5:
+ print(f"Server dangling exits, killing all {context.server_path} ...")
+ process = subprocess.run(['killall', '-9', context.server_path],
+ stderr=subprocess.PIPE,
+ universal_newlines=True)
+ print(process)
+
+
+def is_server_listening(server_fqdn, server_port):
+ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
+ result = sock.connect_ex((server_fqdn, server_port))
+ return result == 0
+
+
+def pid_exists(pid):
+ """Check whether pid exists in the current process table."""
+ import errno
+ if pid < 0:
+ return False
+ try:
+ os.kill(pid, 0)
+ except OSError as e:
+ return e.errno == errno.EPERM
+ else:
+ return True
diff --git a/examples/server/tests/features/issues.feature b/examples/server/tests/features/issues.feature
new file mode 100644
index 00000000..542006d9
--- /dev/null
+++ b/examples/server/tests/features/issues.feature
@@ -0,0 +1,36 @@
+# List of ongoing issues
+@bug
+Feature: Issues
+ # Issue #5655
+ Scenario: Multi users embeddings
+ Given a server listening on localhost:8080
+ And a model file stories260K.gguf
+ And a model alias tinyllama-2
+ And 42 as server seed
+ And 64 KV cache size
+ And 2 slots
+ And continuous batching
+ And embeddings extraction
+ Then the server is starting
+ Then the server is healthy
+
+ Given a prompt:
+ """
+ Write a very long story about AI.
+ """
+ And a prompt:
+ """
+ Write another very long music lyrics.
+ """
+ And a prompt:
+ """
+ Write a very long poem.
+ """
+ And a prompt:
+ """
+ Write a very long joke.
+ """
+ Given concurrent embedding requests
+ Then the server is busy
+ Then the server is idle
+ Then all embeddings are generated
diff --git a/examples/server/tests/features/parallel.feature b/examples/server/tests/features/parallel.feature
new file mode 100644
index 00000000..802d624f
--- /dev/null
+++ b/examples/server/tests/features/parallel.feature
@@ -0,0 +1,77 @@
+@llama.cpp
+Feature: Parallel
+
+ Background: Server startup
+ Given a server listening on localhost:8080
+ And a model file stories260K.gguf
+ And a model alias tinyllama-2
+ And 42 as server seed
+ And 64 KV cache size
+ And 2 slots
+ And continuous batching
+ Then the server is starting
+ Then the server is healthy
+
+ Scenario Outline: Multi users completion
+ Given a prompt:
+ """
+ Write a very long story about AI.
+ """
+ And a prompt:
+ """
+ Write another very long music lyrics.
+ """
+ And <n_predict> max tokens to predict
+ Given concurrent completion requests
+ Then the server is busy
+ Then the server is idle
+ And all slots are idle
+ Then all prompts are predicted with <n_predict> tokens
+ Examples:
+ | n_predict |
+ | 128 |
+
+ Scenario Outline: Multi users OAI completions compatibility
+ Given a system prompt You are a writer.
+ And a model tinyllama-2
+ Given a prompt:
+ """
+ Write a very long book.
+ """
+ And a prompt:
+ """
+ Write another a poem.
+ """
+ And <n_predict> max tokens to predict
+ And streaming is <streaming>
+ Given concurrent OAI completions requests
+ Then the server is busy
+ Then the server is idle
+ Then all prompts are predicted with <n_predict> tokens
+ Examples:
+ | streaming | n_predict |
+ | disabled | 128 |
+ | enabled | 64 |
+
+ Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
+ Given a prompt:
+ """
+ Write a very long story about AI.
+ """
+ And a prompt:
+ """
+ Write another very long music lyrics.
+ """
+ And a prompt:
+ """
+ Write a very long poem.
+ """
+ And a prompt:
+ """
+ Write a very long joke.
+ """
+ And 128 max tokens to predict
+ Given concurrent completion requests
+ Then the server is busy
+ Then the server is idle
+ Then all prompts are predicted
diff --git a/examples/server/tests/features/security.feature b/examples/server/tests/features/security.feature
new file mode 100644
index 00000000..db06d397
--- /dev/null
+++ b/examples/server/tests/features/security.feature
@@ -0,0 +1,50 @@
+@llama.cpp
+Feature: Security
+
+ Background: Server startup with an api key defined
+ Given a server listening on localhost:8080
+ And a model file stories260K.gguf
+ And a server api key llama.cpp
+ Then the server is starting
+ Then the server is healthy
+
+ Scenario Outline: Completion with some user api key
+ Given a prompt test
+ And a user api key <api_key>
+ And 4 max tokens to predict
+ And a completion request with <api_error> api error
+
+ Examples: Prompts
+ | api_key | api_error |
+ | llama.cpp | no |
+ | llama.cpp | no |
+ | hackeme | raised |
+ | | raised |
+
+ Scenario Outline: OAI Compatibility
+ Given a system prompt test
+ And a user prompt test
+ And a model test
+ And 2 max tokens to predict
+ And streaming is disabled
+ And a user api key <api_key>
+ Given an OAI compatible chat completions request with <api_error> api error
+
+ Examples: Prompts
+ | api_key | api_error |
+ | llama.cpp | no |
+ | llama.cpp | no |
+ | hackme | raised |
+
+
+ Scenario Outline: CORS Options
+ When an OPTIONS request is sent from <origin>
+ Then CORS header <cors_header> is set to <cors_header_value>
+
+ Examples: Headers
+ | origin | cors_header | cors_header_value |
+ | localhost | Access-Control-Allow-Origin | localhost |
+ | web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
+ | origin | Access-Control-Allow-Credentials | true |
+ | web.mydomain.fr | Access-Control-Allow-Methods | POST |
+ | web.mydomain.fr | Access-Control-Allow-Headers | * |
diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature
new file mode 100644
index 00000000..fedcfe5a
--- /dev/null
+++ b/examples/server/tests/features/server.feature
@@ -0,0 +1,69 @@
+@llama.cpp
+Feature: llama.cpp server
+
+ Background: Server startup
+ Given a server listening on localhost:8080
+ And a model file stories260K.gguf
+ And a model alias tinyllama-2
+ And 42 as server seed
+ # KV Cache corresponds to the total amount of tokens
+ # that can be stored across all independent sequences: #4130
+ # see --ctx-size and #5568
+ And 32 KV cache size
+ And 1 slots
+ And embeddings extraction
+ And 32 server max tokens to predict
+ Then the server is starting
+ Then the server is healthy
+
+ Scenario: Health
+ Then the server is ready
+ And all slots are idle
+
+ Scenario Outline: Completion
+ Given a prompt <prompt>
+ And <n_predict> max tokens to predict
+ And a completion request with no api error
+ Then <n_predicted> tokens are predicted matching <re_content>
+
+ Examples: Prompts
+ | prompt | n_predict | re_content | n_predicted |
+ | I believe the meaning of life is | 8 | read | 8 |
+ | Write a joke about AI | 64 | (park<or>friends<or>scared)+ | 32 |
+
+ Scenario Outline: OAI Compatibility
+ Given a model <model>
+ And a system prompt <system_prompt>
+ And a user prompt <user_prompt>
+ And <max_tokens> max tokens to predict
+ And streaming is <enable_streaming>
+ Given an OAI compatible chat completions request with no api error
+ Then <n_predicted> tokens are predicted matching <re_content>
+
+ Examples: Prompts
+ | model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
+ | llama-2 | Book | What is the best book | 8 | (Mom<or>what)+ | 8 | disabled |
+ | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks<or>happy<or>bird)+ | 32 | enabled |
+
+ Scenario: Embedding
+ When embeddings are computed for:
+ """
+ What is the capital of Bulgaria ?
+ """
+ Then embeddings are generated
+
+ Scenario: OAI Embeddings compatibility
+ Given a model tinyllama-2
+ When an OAI compatible embeddings computation request for:
+ """
+ What is the capital of Spain ?
+ """
+ Then embeddings are generated
+
+
+ Scenario: Tokenize / Detokenize
+ When tokenizing:
+ """
+ What is the capital of France ?
+ """
+ Then tokens can be detokenize
diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py
new file mode 100644
index 00000000..50f2b641
--- /dev/null
+++ b/examples/server/tests/features/steps/steps.py
@@ -0,0 +1,709 @@
+import asyncio
+import json
+import os
+import re
+import socket
+import subprocess
+import time
+from contextlib import closing
+from re import RegexFlag
+
+import aiohttp
+import openai
+from behave import step
+from behave.api.async_step import async_run_until_complete
+
+
+@step(u"a server listening on {server_fqdn}:{server_port}")
+def step_server_config(context, server_fqdn, server_port):
+ context.server_fqdn = server_fqdn
+ context.server_port = int(server_port)
+ if 'PORT' in os.environ:
+ context.server_port = int(os.environ['PORT'])
+ print(f"$PORT set, overriding server port with to {context.server_port}")
+
+ context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
+
+ context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
+ context.model_alias = None
+ context.n_ctx = None
+ context.n_predict = None
+ context.n_server_predict = None
+ context.n_slots = None
+ context.server_api_key = None
+ context.server_continuous_batching = False
+ context.server_embeddings = False
+ context.server_seed = None
+ context.user_api_key = None
+
+ context.tasks_result = []
+ context.concurrent_tasks = []
+ context.prompts = []
+
+
+@step(u'a model file {model_file}')
+def step_model_file(context, model_file):
+ context.model_file = model_file
+
+
+@step(u'a model alias {model_alias}')
+def step_model_alias(context, model_alias):
+ context.model_alias = model_alias
+
+
+@step(u'{seed} as server seed')
+def step_seed(context, seed):
+ context.server_seed = int(seed)
+
+
+@step(u'{n_ctx} KV cache size')
+def step_n_ctx(context, n_ctx):
+ context.n_ctx = int(n_ctx)
+
+
+@step(u'{n_slots} slots')
+def step_n_slots(context, n_slots):
+ context.n_slots = int(n_slots)
+
+
+@step(u'{n_predict} server max tokens to predict')
+def step_server_n_predict(context, n_predict):
+ context.n_server_predict = int(n_predict)
+
+
+@step(u'continuous batching')
+def step_server_continuous_batching(context):
+ context.server_continuous_batching = True
+
+
+@step(u'embeddings extraction')
+def step_server_embeddings(context):
+ context.server_embeddings = True
+
+
+@step(u"the server is starting")
+def step_start_server(context):
+ start_server_background(context)
+ attempts = 0
+ while True:
+ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
+ result = sock.connect_ex((context.server_fqdn, context.server_port))
+ if result == 0:
+ print("\x1b[33;46mserver started!\x1b[0m")
+ return
+ attempts += 1
+ if attempts > 20:
+ assert False, "server not started"
+ print(f"waiting for server to start, connect error code = {result}...")
+ time.sleep(0.1)
+
+
+@step(u"the server is {expecting_status}")
+@async_run_until_complete
+async def step_wait_for_the_server_to_be_started(context, expecting_status):
+ match expecting_status:
+ case 'healthy':
+ await wait_for_health_status(context, context.base_url, 200, 'ok')
+
+ case 'ready' | 'idle':
+ await wait_for_health_status(context, context.base_url, 200, 'ok',
+ params={'fail_on_no_slot': 0, 'include_slots': 0},
+ slots_idle=context.n_slots,
+ slots_processing=0,
+ expected_slots=[{'id': slot_id, 'state': 0}
+ for slot_id in range(context.n_slots)])
+ case 'busy':
+ await wait_for_health_status(context, context.base_url, 503,
+ 'no slot available',
+ params={'fail_on_no_slot': 0, 'include_slots': 0},
+ slots_idle=0,
+ slots_processing=context.n_slots,
+ expected_slots=[{'id': slot_id, 'state': 1}
+ for slot_id in range(context.n_slots)])
+ case _:
+ assert False, "unknown status"
+
+
+@step(u'all slots are {expected_slot_status_string}')
+@async_run_until_complete
+async def step_all_slots_status(context, expected_slot_status_string):
+ match expected_slot_status_string:
+ case 'idle':
+ expected_slot_status = 0
+ case 'busy':
+ expected_slot_status = 1
+ case _:
+ assert False, "unknown status"
+
+ expected_slots = [{'id': slot_id, 'state': expected_slot_status}
+ for slot_id in range(context.n_slots)]
+ await request_slots_status(context, expected_slots)
+
+
+@step(u'a completion request with {api_error} api error')
+@async_run_until_complete
+async def step_request_completion(context, api_error):
+ expect_api_error = api_error == 'raised'
+ completion = await request_completion(context.prompts.pop(),
+ context.base_url,
+ debug=context.debug,
+ n_predict=context.n_predict,
+ server_seed=context.server_seed,
+ expect_api_error=expect_api_error,
+ user_api_key=context.user_api_key)
+ context.tasks_result.append(completion)
+ if context.debug:
+ print(f"Completion response: {completion}")
+ if expect_api_error:
+ assert completion == 401, f"completion must be an 401 status code: {completion}"
+
+
+@step(u'{predicted_n} tokens are predicted matching {re_content}')
+def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
+ assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n), re_content)
+
+
+@step(u'{predicted_n} tokens are predicted')
+def step_n_tokens_predicted(context, predicted_n):
+ assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n))
+
+
+@step(u'a user prompt {user_prompt}')
+def step_user_prompt(context, user_prompt):
+ context.prompts.append(user_prompt)
+
+
+@step(u'a system prompt {system_prompt}')
+def step_system_prompt(context, system_prompt):
+ context.system_prompt = system_prompt
+
+
+@step(u'a model {model}')
+def step_model(context, model):
+ context.model = model
+
+
+@step(u'{max_tokens} max tokens to predict')
+def step_max_tokens(context, max_tokens):
+ context.n_predict = int(max_tokens)
+
+
+@step(u'streaming is {enable_streaming}')
+def step_streaming(context, enable_streaming):
+ context.enable_streaming = enable_streaming == 'enabled'
+
+
+@step(u'a user api key {user_api_key}')
+def step_user_api_key(context, user_api_key):
+ context.user_api_key = user_api_key
+
+
+@step(u'no user api key')
+def step_no_user_api_key(context):
+ context.user_api_key = None
+
+
+@step(u'a user api key ')
+def step_no_user_api_key_space(context):
+ context.user_api_key = None
+
+
+@step(u'a server api key {server_api_key}')
+def step_server_api_key(context, server_api_key):
+ context.server_api_key = server_api_key
+
+
+@step(u'an OAI compatible chat completions request with {api_error} api error')
+@async_run_until_complete
+async def step_oai_chat_completions(context, api_error):
+ if context.debug:
+ print(f"Submitting OAI compatible completions request...")
+ expect_api_error = api_error == 'raised'
+ completion = await oai_chat_completions(context.prompts.pop(),
+ context.system_prompt,
+ context.base_url,
+ False,
+ model=context.model if hasattr(context, 'model') else None,
+
+ n_predict=context.n_predict
+ if hasattr(context, 'n_predict') else None,
+
+ enable_streaming=context.enable_streaming
+ if hasattr(context, 'enable_streaming') else None,
+
+ server_seed=context.server_seed
+ if hasattr(context, 'server_seed') else None,
+
+ user_api_key=context.user_api_key
+ if hasattr(context, 'user_api_key') else None,
+
+ expect_api_error=expect_api_error)
+ context.tasks_result.append(completion)
+ if context.debug:
+ print(f"Completion response: {completion}")
+ if expect_api_error:
+ assert completion == 401, f"completion must be an 401 status code: {completion}"
+
+ if context.debug:
+ print(f"Completion response: {completion}")
+
+
+@step(u'a prompt')
+def step_a_prompt(context):
+ context.prompts.append(context.text)
+
+
+@step(u'a prompt {prompt}')
+def step_a_prompt_prompt(context, prompt):
+ context.prompts.append(prompt)
+
+
+@step(u'concurrent completion requests')
+@async_run_until_complete()
+async def step_concurrent_completion_requests(context):
+ await concurrent_completion_requests(context,
+ request_completion,
+ # prompt is inserted automatically
+ context.base_url,
+ debug=context.debug,
+ n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
+ server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
+ user_api_key=context.user_api_key if hasattr(context,
+ 'user_api_key') else None)
+
+
+@step(u'concurrent OAI completions requests')
+@async_run_until_complete
+async def step_oai_chat_completions(context):
+ await concurrent_completion_requests(context, oai_chat_completions,
+ # user_prompt is inserted automatically
+ context.system_prompt,
+ context.base_url,
+ True, # async_client
+ model=context.model
+ if hasattr(context, 'model') else None,
+ n_predict=context.n_predict
+ if hasattr(context, 'n_predict') else None,
+ enable_streaming=context.enable_streaming
+ if hasattr(context, 'enable_streaming') else None,
+ server_seed=context.server_seed
+ if hasattr(context, 'server_seed') else None,
+ user_api_key=context.user_api_key
+ if hasattr(context, 'user_api_key') else None)
+
+
+@step(u'all prompts are predicted')
+@async_run_until_complete
+async def step_all_prompts_are_predicted(context):
+ await all_prompts_are_predicted(context)
+
+
+@step(u'all prompts are predicted with {n_predict} tokens')
+@async_run_until_complete
+async def step_all_prompts_are_predicted_with_n_tokens(context, n_predict):
+ expected_predicted_n = int(n_predict)
+ await all_prompts_are_predicted(context, expected_predicted_n)
+
+
+async def all_prompts_are_predicted(context, expected_predicted_n=None):
+ n_completions = await gather_tasks_results(context)
+ assert n_completions > 0
+ for i in range(n_completions):
+ assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
+ assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
+
+
+@step(u'embeddings are computed for')
+@async_run_until_complete
+async def step_compute_embedding(context):
+ content = context.text
+ base_url = context.base_url
+ context.embeddings = await request_embedding(content, base_url)
+
+
+@step(u'embeddings are generated')
+def step_assert_embeddings(context):
+ assert_embeddings(context.embeddings)
+
+
+@step(u'an OAI compatible embeddings computation request for')
+def step_oai_compute_embedding(context):
+ openai.api_key = 'nope' # openai client always expects an api_keu
+ if context.user_api_key is not None:
+ openai.api_key = context.user_api_key
+ openai.api_base = f'{context.base_url}/v1'
+ embeddings = openai.Embedding.create(
+ model=context.model,
+ input=context.text,
+ )
+ context.embeddings = embeddings
+
+
+@step(u'concurrent embedding requests')
+@async_run_until_complete()
+async def step_concurrent_embedding_requests(context):
+ await concurrent_completion_requests(context,
+ request_embedding,
+ # prompt is inserted automatically
+ context.base_url)
+
+
+@step(u'all embeddings are generated')
+@async_run_until_complete()
+async def all_embeddings_are_generated(context):
+ n_embedding_requests = await gather_tasks_results(context)
+ assert n_embedding_requests > 0
+ for i in range(n_embedding_requests):
+ assert_embeddings(context.tasks_result.pop())
+
+
+@step(u'tokenizing')
+@async_run_until_complete
+async def step_tokenize(context):
+ context.tokenized_text = context.text
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{context.base_url}/tokenize',
+ json={
+ "content": context.tokenized_text,
+ }) as response:
+ assert response.status == 200
+ tokenize_json = await response.json()
+ context.tokens = tokenize_json['tokens']
+
+
+@step(u'tokens can be detokenize')
+@async_run_until_complete
+async def step_detokenize(context):
+ assert len(context.tokens) > 0
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{context.base_url}/detokenize',
+ json={
+ "tokens": context.tokens,
+ }) as response:
+ assert response.status == 200
+ detokenize_json = await response.json()
+ # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
+ assert context.tokenized_text == detokenize_json['content'].strip()
+
+
+@step(u'an OPTIONS request is sent from {origin}')
+@async_run_until_complete
+async def step_options_request(context, origin):
+ async with aiohttp.ClientSession() as session:
+ async with session.options(f'{context.base_url}/v1/chat/completions',
+ headers={"Origin": origin}) as response:
+ assert response.status == 200
+ context.options_response = response
+
+
+@step(u'CORS header {cors_header} is set to {cors_header_value}')
+def step_check_options_header_value(context, cors_header, cors_header_value):
+ assert context.options_response.headers[cors_header] == cors_header_value
+
+
+async def concurrent_completion_requests(context, f_completion, *args, **kwargs):
+ n_prompts = len(context.prompts)
+ if context.debug:
+ print(f"starting {n_prompts} concurrent completion requests...")
+ assert n_prompts > 0
+ for prompt_no in range(n_prompts):
+ shifted_args = [context.prompts.pop(), *args]
+ context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
+ await asyncio.sleep(0.1)
+
+
+async def request_completion(prompt,
+ base_url,
+ debug=False,
+ n_predict=None,
+ server_seed=None,
+ expect_api_error=None,
+ user_api_key=None):
+ if debug:
+ print(f"Sending completion request: {prompt}")
+ origin = "my.super.domain"
+ headers = {
+ 'Origin': origin
+ }
+ if user_api_key is not None:
+ if debug:
+ print(f"Set user_api_key: {user_api_key}")
+ headers['Authorization'] = f'Bearer {user_api_key}'
+
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{base_url}/completion',
+ json={
+ "prompt": prompt,
+ "n_predict": int(n_predict) if n_predict is not None else -1,
+ "seed": server_seed if server_seed is not None else 42
+ },
+ headers=headers) as response:
+ if expect_api_error is None or not expect_api_error:
+ assert response.status == 200
+ assert response.headers['Access-Control-Allow-Origin'] == origin
+ return await response.json()
+ else:
+ return response.status
+
+
+async def oai_chat_completions(user_prompt,
+ system_prompt,
+ base_url,
+ async_client,
+ debug=False,
+ model=None,
+ n_predict=None,
+ enable_streaming=None,
+ server_seed=None,
+ user_api_key=None,
+ expect_api_error=None):
+ if debug:
+ print(f"Sending OAI Chat completions request: {user_prompt}")
+ # openai client always expects an api key
+ user_api_key = user_api_key if user_api_key is not None else 'nope'
+ seed = server_seed if server_seed is not None else 42
+ enable_streaming = enable_streaming if enable_streaming is not None else False
+ payload = {
+ "messages": [
+ {
+ "role": "system",
+ "content": system_prompt,
+ },
+ {
+ "role": "user",
+ "content": user_prompt,
+ }
+ ],
+ "model": model,
+ "max_tokens": n_predict,
+ "stream": enable_streaming,
+ "seed": seed
+ }
+ completion_response = {
+ 'content': '',
+ 'timings': {
+ 'predicted_n': 0
+ }
+ }
+ if async_client:
+ origin = 'llama.cpp'
+ headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{base_url}/v1/chat/completions',
+ json=payload,
+ headers=headers) as response:
+ if enable_streaming:
+ assert response.status == 200
+ assert response.headers['Access-Control-Allow-Origin'] == origin
+ assert response.headers['Content-Type'] == "text/event-stream"
+ event_received = True
+ while event_received:
+ event_received = False
+ async for line_in_bytes in response.content:
+ line = line_in_bytes.decode('utf8')
+ line = line.rstrip('\n').rstrip('\r')
+ if line == '':
+ continue
+ event_data = line.split(': ', 1)
+ assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
+ chunk_raw = event_data[1]
+
+ chunk = json.loads(chunk_raw)
+ assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
+ delta = chunk['choices'][0]['delta']
+ if 'content' in delta:
+ completion_response['content'] += delta['content']
+ completion_response['timings']['predicted_n'] += 1
+ else:
+ if expect_api_error is None or not expect_api_error:
+ assert response.status == 200
+ assert response.headers['Access-Control-Allow-Origin'] == origin
+ assert response.headers['Content-Type'] == "application/json; charset=utf-8"
+ chat_completion_raw = await response.json()
+ completion_response = {
+ 'content': chat_completion_raw['choices'][0]['message'],
+ 'timings': {
+ 'predicted_n': chat_completion_raw['usage']['completion_tokens']
+ }
+ }
+ else:
+ return response.status
+ else:
+ try:
+ openai.api_key = user_api_key
+ openai.api_base = f'{base_url}/v1/chat'
+ chat_completion = openai.Completion.create(
+ messages=payload['messages'],
+ model=model,
+ max_tokens=n_predict,
+ stream=enable_streaming,
+ seed=seed
+ )
+ except openai.error.APIError as e:
+ if expect_api_error is not None and expect_api_error:
+ return 401
+ else:
+ assert False, f'error raised: {e}'
+
+ if enable_streaming:
+ for chunk in chat_completion:
+ assert len(chunk.choices) == 1
+ delta = chunk.choices[0].delta
+ if 'content' in delta:
+ completion_response['content'] += delta['content']
+ completion_response['timings']['predicted_n'] += 1
+ else:
+ assert len(chat_completion.choices) == 1
+ completion_response = {
+ 'content': chat_completion.choices[0].message.content,
+ 'timings': {
+ 'predicted_n': chat_completion.usage.completion_tokens
+ }
+ }
+ if debug:
+ print("OAI response formatted to llama.cpp:", completion_response)
+ return completion_response
+
+
+async def request_embedding(content, base_url):
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{base_url}/embedding',
+ json={
+ "content": content,
+ }) as response:
+ assert response.status == 200
+ response_json = await response.json()
+ return response_json['embedding']
+
+
+def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
+ content = completion_response['content']
+ n_predicted = completion_response['timings']['predicted_n']
+ assert len(content) > 0, "no token predicted"
+ if expected_predicted_n is not None:
+ assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
+ f' {n_predicted} <> {expected_predicted_n}')
+ if re_content is not None:
+ re_content = '^.*' + re_content.replace('<or>', '|') + '.*$'
+ assert re.match(re_content, content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL), (
+ f'invalid tokens predicted:'
+ f' ```\n{content}\n``` do not match /{re_content}/')
+
+
+async def gather_tasks_results(context):
+ n_tasks = len(context.concurrent_tasks)
+ if context.debug:
+ print(f"Waiting for all {n_tasks} tasks results...")
+ for task_no in range(n_tasks):
+ context.tasks_result.append(await context.concurrent_tasks.pop())
+ n_completions = len(context.tasks_result)
+ return n_completions
+
+
+async def wait_for_health_status(context,
+ base_url,
+ expected_http_status_code,
+ expected_health_status,
+ params=None,
+ slots_idle=None,
+ slots_processing=None,
+ expected_slots=None):
+ if context.debug:
+ print(f"Starting checking for health for expected_health_status={expected_health_status}")
+ timeout = 3 # seconds
+ interval = 0.5
+ counter = 0
+ async with aiohttp.ClientSession() as session:
+ while True:
+ async with await session.get(f'{base_url}/health', params=params) as health_response:
+ status_code = health_response.status
+ health = await health_response.json()
+ if context.debug:
+ print(f"HEALTH - response for expected health status='{expected_health_status}' on "
+ f"'{base_url}/health'?{params} is {health}")
+ if (status_code == expected_http_status_code
+ and health['status'] == expected_health_status
+ and (slots_idle is None or health['slots_idle'] == slots_idle)
+ and (slots_processing is None or health['slots_processing'] == slots_processing)):
+ if expected_slots is not None:
+ assert_slots_status(health['slots'], expected_slots)
+ return
+ if (status_code == expected_http_status_code
+ and health['status'] == expected_health_status
+ and (slots_idle is None or health['slots_idle'] == slots_idle)
+ and (slots_processing is None or health['slots_processing'] == slots_processing)):
+ if expected_slots is not None:
+ assert_slots_status(health['slots'], expected_slots)
+ return
+ await asyncio.sleep(interval)
+
+ counter += interval
+ if counter >= timeout:
+ # Sometimes health requests are triggered after completions are predicted
+ if expected_http_status_code == 503:
+ if len(context.tasks_result) == 0:
+ print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
+ " busy health check missed, probably too fast inference\x1b[0m")
+ n_completions = await gather_tasks_results(context)
+ if n_completions > 0:
+ return
+
+ assert False, 'timeout exceeded'
+
+
+def assert_embeddings(embeddings):
+ assert len(embeddings) > 0
+ embeddings_computed = False
+ for emb in embeddings:
+ if emb != 0:
+ embeddings_computed = True
+ assert embeddings_computed, f"Embeddings: {embeddings}"
+
+
+async def request_slots_status(context, expected_slots):
+ async with aiohttp.ClientSession() as session:
+ async with await session.get(f'{context.base_url}/slots') as slots_response:
+ assert slots_response.status == 200
+ slots = await slots_response.json()
+ assert_slots_status(slots, expected_slots)
+
+
+def assert_slots_status(slots, expected_slots):
+ assert len(slots) == len(expected_slots)
+ for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
+ for key in expected:
+ assert expected[key] == slot[key], (f"invalid slot {slot_id}"
+ f" expected[{key}] != slot[{key}]"
+ f" = {expected[key]} != {slot[key]}")
+
+
+def start_server_background(context):
+ context.server_path = '../../../build/bin/server'
+ if 'LLAMA_SERVER_BIN_PATH' in os.environ:
+ context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
+ server_args = [
+ '--host', context.server_fqdn,
+ '--port', context.server_port,
+ '--model', context.model_file
+ ]
+ if context.server_continuous_batching:
+ server_args.append('--cont-batching')
+ if context.server_embeddings:
+ server_args.append('--embedding')
+ if context.model_alias is not None:
+ server_args.extend(['--alias', context.model_alias])
+ if context.n_ctx is not None:
+ server_args.extend(['--ctx-size', context.n_ctx])
+ if context.n_slots is not None:
+ server_args.extend(['--parallel', context.n_slots])
+ if context.n_server_predict is not None:
+ server_args.extend(['--n-predict', context.n_server_predict])
+ if context.server_api_key is not None:
+ server_args.extend(['--api-key', context.server_api_key])
+ if context.debug:
+ server_args.append('--verbose')
+ print(f"starting server with: {context.server_path}", *server_args)
+ context.server_process = subprocess.Popen(
+ [str(arg) for arg in [context.server_path, *server_args]],
+ close_fds=True)
+ print(f"server pid={context.server_process.pid}")
diff --git a/examples/server/tests/features/wrong_usages.feature b/examples/server/tests/features/wrong_usages.feature
new file mode 100644
index 00000000..e228b237
--- /dev/null
+++ b/examples/server/tests/features/wrong_usages.feature
@@ -0,0 +1,21 @@
+# run with ./test.sh --tags wrong_usage
+@wrong_usage
+Feature: Wrong usage of llama.cpp server
+
+ #3969 The user must always set --n-predict option
+ # to cap the number of tokens any completion request can generate
+ # or pass n_predict/max_tokens in the request.
+ Scenario: Infinite loop
+ Given a server listening on localhost:8080
+ And a model file stories260K.gguf
+ # Uncomment below to fix the issue
+ #And 64 server max tokens to predict
+ Then the server is starting
+ Given a prompt:
+ """
+ Go to: infinite loop
+ """
+ # Uncomment below to fix the issue
+ #And 128 max tokens to predict
+ Given concurrent completion requests
+ Then all prompts are predicted
diff --git a/examples/server/tests/requirements.txt b/examples/server/tests/requirements.txt
new file mode 100644
index 00000000..3e51b12d
--- /dev/null
+++ b/examples/server/tests/requirements.txt
@@ -0,0 +1,3 @@
+aiohttp~=3.9.3
+behave~=1.2.6
+openai~=0.25.0
diff --git a/examples/server/tests/tests.sh b/examples/server/tests/tests.sh
new file mode 100755
index 00000000..17a4e6fc
--- /dev/null
+++ b/examples/server/tests/tests.sh
@@ -0,0 +1,12 @@
+#!/bin/bash
+
+set -eu
+
+if [ $# -lt 1 ]
+then
+ # Start @llama.cpp scenario
+ behave --summary --stop --no-capture --exclude 'issues|wrong_usages' --tags llama.cpp
+else
+ behave "$@"
+fi
+