summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Bevenius <daniel.bevenius@gmail.com>2024-02-16 10:24:39 +0100
committerGitHub <noreply@github.com>2024-02-16 11:24:39 +0200
commit60ed04cf82dc91ade725dd7ad53f0ee81f76eccf (patch)
tree1701f0f8e59921c846561659f682ac78f19beb46
parent594845aab1c6775877f6d9545a51dc0f8d0b3d77 (diff)
llava : fix clip-model-is-vision flag in README.md (#5509)
* llava: fix clip-model-is-vision flag in README.md This commit fixes the flag `--clip_model_is_vision` in README.md which is does not match the actual flag: ```console $ python convert-image-encoder-to-gguf.py --help ... --clip-model-is-vision The clip model is a pure vision model (ShareGPT4V vision extract for example) ``` Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * llava: update link to vit config in README.md Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
-rw-r--r--examples/llava/README.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/examples/llava/README.md b/examples/llava/README.md
index 1d5374f2..57eb4293 100644
--- a/examples/llava/README.md
+++ b/examples/llava/README.md
@@ -63,8 +63,8 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
1) Backup your pth/safetensor model files as llava-surgery modifies them
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
- you will find a llava.projector and a llava.clip file in your model directory
-3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config.json)
-4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip_model_is_vision`
+3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
+4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
5) Everything else as usual: convert.py the hf model, quantize as needed
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)