summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlexey Parfenov <zxed@alkatrazstudio.net>2023-12-23 09:31:49 +0000
committerGitHub <noreply@github.com>2023-12-23 11:31:49 +0200
commit6123979952385847d8348e295d77d6e01da8aa84 (patch)
tree2d536d31ef7e1b6f07468ff6b13710da1fe4f732
parentb9ec82d262cb20d7f0a8a1157bfa9aace40e2625 (diff)
server : allow to specify custom prompt for penalty calculation (#3727)
-rw-r--r--common/sampling.cpp8
-rw-r--r--common/sampling.h3
-rw-r--r--examples/server/README.md2
-rw-r--r--examples/server/server.cpp44
4 files changed, 54 insertions, 3 deletions
diff --git a/common/sampling.cpp b/common/sampling.cpp
index 5b15204b..8e45909f 100644
--- a/common/sampling.cpp
+++ b/common/sampling.cpp
@@ -203,12 +203,14 @@ static llama_token llama_sampling_sample_impl(
}
// apply penalties
- if (!prev.empty()) {
+ const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
+ const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
+ if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
- prev.data() + prev.size() - penalty_last_n,
- penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
+ penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
+ penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
diff --git a/common/sampling.h b/common/sampling.h
index fdfa9eed..f16ef97e 100644
--- a/common/sampling.h
+++ b/common/sampling.h
@@ -36,6 +36,9 @@ typedef struct llama_sampling_params {
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
+
+ std::vector<llama_token> penalty_prompt_tokens;
+ bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context
diff --git a/examples/server/README.md b/examples/server/README.md
index 0751b961..f1e586a1 100644
--- a/examples/server/README.md
+++ b/examples/server/README.md
@@ -148,6 +148,8 @@ node index.js
`frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled);
+ `penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens (default: `null` = use the original `prompt`).
+
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
`mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0).
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
index 04038530..72dfe452 100644
--- a/examples/server/server.cpp
+++ b/examples/server/server.cpp
@@ -761,6 +761,42 @@ struct llama_server_context
slot->prompt = "";
}
+ slot->sparams.penalty_prompt_tokens.clear();
+ slot->sparams.use_penalty_prompt_tokens = false;
+ const auto &penalty_prompt = data.find("penalty_prompt");
+ if (penalty_prompt != data.end())
+ {
+ if (penalty_prompt->is_string())
+ {
+ const auto penalty_prompt_string = penalty_prompt->get<std::string>();
+ auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
+ slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
+ if (slot->params.n_predict > 0)
+ {
+ slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
+ }
+ slot->sparams.use_penalty_prompt_tokens = true;
+ }
+ else if (penalty_prompt->is_array())
+ {
+ const auto n_tokens = penalty_prompt->size();
+ slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
+ const int n_vocab = llama_n_vocab(model);
+ for (const auto &penalty_token : *penalty_prompt)
+ {
+ if (penalty_token.is_number_integer())
+ {
+ const auto tok = penalty_token.get<llama_token>();
+ if (tok >= 0 && tok < n_vocab)
+ {
+ slot->sparams.penalty_prompt_tokens.push_back(tok);
+ }
+ }
+ }
+ slot->sparams.use_penalty_prompt_tokens = true;
+ }
+ }
+
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
@@ -992,6 +1028,12 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
+ if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
+ {
+ // we can change penalty_prompt_tokens because it is always created from scratch each request
+ slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
+ }
+
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
@@ -1183,6 +1225,8 @@ struct llama_server_context
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
+ {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
+ {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},