summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXuan Son Nguyen <thichthat@gmail.com>2024-02-02 08:56:31 +0100
committerGitHub <noreply@github.com>2024-02-02 09:56:31 +0200
commit6b91b1e0a92ac2e4e269eec6361ca53a61ced6c6 (patch)
treeee931e411a1bf8d533b52ea58ca2121c0f102a50
parente805f0fa9951081ce0a86378a7aa52b6f636b82d (diff)
docker : add build for SYCL, Vulkan + update readme (#5228)
* add vulkan dockerfile * intel dockerfile: compile sycl by default * fix vulkan dockerfile * add docs for vulkan * docs: sycl build in docker * docs: remove trailing spaces * docs: sycl: add docker section * docs: clarify install vulkan SDK outside docker * sycl: use intel/oneapi-basekit docker image * docs: correct TOC * docs: correct docker image for Intel oneMKL
-rw-r--r--.devops/main-intel.Dockerfile16
-rw-r--r--.devops/main-vulkan.Dockerfile29
-rw-r--r--.devops/server-intel.Dockerfile17
-rw-r--r--.devops/server-vulkan.Dockerfile29
-rw-r--r--README-sycl.md102
-rw-r--r--README.md64
6 files changed, 189 insertions, 68 deletions
diff --git a/.devops/main-intel.Dockerfile b/.devops/main-intel.Dockerfile
index e1e6acc2..572e5d8e 100644
--- a/.devops/main-intel.Dockerfile
+++ b/.devops/main-intel.Dockerfile
@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
-ARG UBUNTU_VERSION=22.04
-FROM intel/hpckit:$ONEAPI_VERSION as build
+FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
+ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
@@ -10,16 +10,18 @@ WORKDIR /app
COPY . .
-# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
RUN mkdir build && \
cd build && \
- cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
- cmake --build . --config Release --target main server
+ if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
+ echo "LLAMA_SYCL_F16 is set" && \
+ export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
+ fi && \
+ cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
+ cmake --build . --config Release --target main
-FROM ubuntu:$UBUNTU_VERSION as runtime
+FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/main /main
-COPY --from=build /app/build/bin/server /server
ENV LC_ALL=C.utf8
diff --git a/.devops/main-vulkan.Dockerfile b/.devops/main-vulkan.Dockerfile
new file mode 100644
index 00000000..bca46036
--- /dev/null
+++ b/.devops/main-vulkan.Dockerfile
@@ -0,0 +1,29 @@
+ARG UBUNTU_VERSION=jammy
+
+FROM ubuntu:$UBUNTU_VERSION as build
+
+# Install build tools
+RUN apt update && apt install -y git build-essential cmake wget
+
+# Install Vulkan SDK
+RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
+ wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
+ apt update -y && \
+ apt-get install -y vulkan-sdk
+
+# Build it
+WORKDIR /app
+COPY . .
+RUN mkdir build && \
+ cd build && \
+ cmake .. -DLLAMA_VULKAN=1 && \
+ cmake --build . --config Release --target main
+
+# Clean up
+WORKDIR /
+RUN cp /app/build/bin/main /main && \
+ rm -rf /app
+
+ENV LC_ALL=C.utf8
+
+ENTRYPOINT [ "/main" ]
diff --git a/.devops/server-intel.Dockerfile b/.devops/server-intel.Dockerfile
index e343d278..312f2df8 100644
--- a/.devops/server-intel.Dockerfile
+++ b/.devops/server-intel.Dockerfile
@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
-ARG UBUNTU_VERSION=22.04
-FROM intel/hpckit:$ONEAPI_VERSION as build
+FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
+ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
@@ -10,13 +10,16 @@ WORKDIR /app
COPY . .
-# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
RUN mkdir build && \
cd build && \
- cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
- cmake --build . --config Release --target main server
-
-FROM ubuntu:$UBUNTU_VERSION as runtime
+ if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
+ echo "LLAMA_SYCL_F16 is set" && \
+ export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
+ fi && \
+ cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
+ cmake --build . --config Release --target server
+
+FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/server /server
diff --git a/.devops/server-vulkan.Dockerfile b/.devops/server-vulkan.Dockerfile
new file mode 100644
index 00000000..e0add6fc
--- /dev/null
+++ b/.devops/server-vulkan.Dockerfile
@@ -0,0 +1,29 @@
+ARG UBUNTU_VERSION=jammy
+
+FROM ubuntu:$UBUNTU_VERSION as build
+
+# Install build tools
+RUN apt update && apt install -y git build-essential cmake wget
+
+# Install Vulkan SDK
+RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
+ wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
+ apt update -y && \
+ apt-get install -y vulkan-sdk
+
+# Build it
+WORKDIR /app
+COPY . .
+RUN mkdir build && \
+ cd build && \
+ cmake .. -DLLAMA_VULKAN=1 && \
+ cmake --build . --config Release --target server
+
+# Clean up
+WORKDIR /
+RUN cp /app/build/bin/server /server && \
+ rm -rf /app
+
+ENV LC_ALL=C.utf8
+
+ENTRYPOINT [ "/server" ]
diff --git a/README-sycl.md b/README-sycl.md
index f7edc1c3..7aa4274a 100644
--- a/README-sycl.md
+++ b/README-sycl.md
@@ -1,22 +1,15 @@
# llama.cpp for SYCL
-[Background](#background)
-
-[OS](#os)
-
-[Intel GPU](#intel-gpu)
-
-[Linux](#linux)
-
-[Windows](#windows)
-
-[Environment Variable](#environment-variable)
-
-[Known Issue](#known-issue)
-
-[Q&A](#q&a)
-
-[Todo](#todo)
+- [Background](#background)
+- [OS](#os)
+- [Intel GPU](#intel-gpu)
+- [Docker](#docker)
+- [Linux](#linux)
+- [Windows](#windows)
+- [Environment Variable](#environment-variable)
+- [Known Issue](#known-issue)
+- [Q&A](#q&a)
+- [Todo](#todo)
## Background
@@ -36,7 +29,7 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|OS|Status|Verified|
|-|-|-|
-|Linux|Support|Ubuntu 22.04|
+|Linux|Support|Ubuntu 22.04, Fedora Silverblue 39|
|Windows|Support|Windows 11|
@@ -50,7 +43,7 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770, 730M|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
-|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
+|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|
Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.
@@ -64,6 +57,38 @@ For iGPU, please make sure the shared memory from host memory is enough. For lla
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
+## Docker
+
+Note:
+- Only docker on Linux is tested. Docker on WSL may not work.
+- You may need to install Intel GPU driver on the host machine (See the [Linux](#linux) section to know how to do that)
+
+### Build the image
+
+You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
+
+
+```sh
+# For F16:
+#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
+
+# Or, for F32:
+docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
+
+# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example
+```
+
+### Run
+
+```sh
+# Firstly, find all the DRI cards:
+ls -la /dev/dri
+# Then, pick the card that you want to use.
+
+# For example with "/dev/dri/card1"
+docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
+```
+
## Linux
### Setup Environment
@@ -76,7 +101,7 @@ Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
-```
+```sh
sudo usermod -aG render username
sudo usermod -aG video username
```
@@ -85,7 +110,7 @@ Note: re-login to enable it.
c. Check
-```
+```sh
sudo apt install clinfo
sudo clinfo -l
```
@@ -103,7 +128,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
2. Install Intel® oneAPI Base toolkit.
-
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
@@ -112,7 +136,7 @@ Following guide use the default folder as example. If you use other folder, plea
b. Check
-```
+```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
@@ -131,21 +155,25 @@ Output (example):
2. Build locally:
-```
+Note:
+- You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
+- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
+
+```sh
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
-#for FP16
-#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference
+# For FP16:
+#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
-#for FP32
+# Or, for FP32:
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
-#build example/main only
+# Build example/main only
#cmake --build . --config Release --target main
-#build all binary
+# Or, build all binary
cmake --build . --config Release -v
cd ..
@@ -153,14 +181,10 @@ cd ..
or
-```
+```sh
./examples/sycl/build.sh
```
-Note:
-
-- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
-
### Run
1. Put model file to folder **models**
@@ -177,10 +201,10 @@ source /opt/intel/oneapi/setvars.sh
Run without parameter:
-```
+```sh
./build/bin/ls-sycl-device
-or
+# or running the "main" executable and look at the output log:
./build/bin/main
```
@@ -209,13 +233,13 @@ found 4 SYCL devices:
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
-```
+```sh
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
or run by script:
-```
-./examples/sycl/run-llama2.sh
+```sh
+./examples/sycl/run_llama2.sh
```
Note:
diff --git a/README.md b/README.md
index e6ed1d42..af1f09fa 100644
--- a/README.md
+++ b/README.md
@@ -393,28 +393,28 @@ Building the program with BLAS support may lead to some performance improvements
Check [BLIS.md](docs/BLIS.md) for more information.
+- #### SYCL
+ SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
+
+ llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
+
+ For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
+
- #### Intel oneMKL
+ Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
+
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
mkdir build
cd build
- source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
+ source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
- Using oneAPI docker image:
- If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
-
- ```bash
- mkdir build
- cd build
- cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
- cmake --build . --config Release
- ```
-
- Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
+ If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
@@ -601,14 +601,48 @@ Building the program with BLAS support may lead to some performance improvements
You can get a list of platforms and devices from the `clinfo -l` command, etc.
-- #### SYCL
+- #### Vulkan
- SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
+ **With docker**:
- llama.cpp based on SYCL is used to support Intel GPU (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
+ You don't need to install Vulkan SDK. It will be installed inside the container.
- For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
+ ```sh
+ # Build the image
+ docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
+
+ # Then, use it:
+ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
+ ```
+
+ **Without docker**:
+
+ Firstly, you need to make sure you installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
+ For example, on Ubuntu 22.04 (jammy), use the command below:
+
+ ```bash
+ wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
+ wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
+ apt update -y
+ apt-get install -y vulkan-sdk
+ # To verify the installation, use the command below:
+ vulkaninfo
+ ```
+
+ Then, build llama.cpp using the cmake command below:
+
+ ```bash
+ mkdir -p build
+ cd build
+ cmake .. -DLLAMA_VULKAN=1
+ cmake --build . --config Release
+ # Test the output binary (with "-ngl 33" to offload all layers to GPU)
+ ./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
+
+ # You should see in the output, ggml_vulkan detected your GPU. For example:
+ # ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
+ ```
### Prepare Data & Run