diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-09-14 20:02:32 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-09-14 20:02:32 +0300 |
commit | 6f11c959949f3064aa58f0f787e531beed751765 (patch) | |
tree | feaedcb28e3e5b41f15e56da4a1eb68d362569cf | |
parent | 76be98fdec39fed876803d54e83cb4d6f2b50f90 (diff) |
Adding bf16 support to CUDA (#40)
* Adding bf16 support to CUDA - matrix multipications
* Adding bf16 support to CUDA - cleanup
* Adapt to latest master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | ggml/src/ggml-cuda.cu | 35 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/convert.cu | 60 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/convert.cuh | 3 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/vendors/cuda.h | 1 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/vendors/hip.h | 1 |
5 files changed, 99 insertions, 1 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 29fb5075..87d7e17e 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -1227,7 +1227,39 @@ static void ggml_cuda_op_mul_mat_cublas( const int compute_capability = ggml_cuda_info().devices[id].cc; - if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { + if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) { + + ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id)); + if (src1->type != GGML_TYPE_BF16) { + const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type); + GGML_ASSERT(to_bf16_cuda != nullptr); + size_t ne = src1_ncols*ne10; + src1_as_bf16.alloc(ne); + to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), src1_ncols, ne10, stream); + } + const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get(); + const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i; + ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols); + + const float alpha_f32 = 1.0f; + const float beta_f32 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); + CUBLAS_CHECK( + cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f32, src0_ptr, CUDA_R_16BF, ne00, + src1_ptr, CUDA_R_16BF, ne10, + &beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc, + CUBLAS_COMPUTE_32F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16); + to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff, src1_ncols, stream); + return; + } + + if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id)); if (src0->type != GGML_TYPE_F16) { @@ -2764,6 +2796,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons switch (a->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: + case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index 03de64ef..4b1be7c1 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -926,6 +926,37 @@ static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __res y[i] = x[i]; } +template <typename dst_t> +static __global__ void convert_from_bf16(const nv_bfloat16 * __restrict__ x, dst_t * __restrict__ y, const int64_t k) { + const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + y[i] = __bfloat162float(x[i]); +} + +static __global__ void convert_to_bf16(const float * __restrict__ x, nv_bfloat16 * __restrict__ y, const int64_t k) { + const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + y[i] = __float2bfloat16(x[i]); +} + +static __global__ void convert_to_bf16(const half * __restrict__ x, nv_bfloat16 * __restrict__ y, const int64_t k) { + const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + y[i] = __float2bfloat16((float)x[i]); +} + template <typename src_t, typename dst_t> static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { const int64_t k = nrows * n_per_row; @@ -933,6 +964,31 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_ convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } +template <typename dst_t> +static void convert_from_bf16_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { + const int64_t k = nrows*n_per_row; + const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; + convert_from_bf16<<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>((const nv_bfloat16 *)vx, y, k); +} + +template <typename src_t> +static void convert_to_bf16_cuda(const void * __restrict__ vx, nv_bfloat16 * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { + const int64_t k = nrows*n_per_row; + const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; + convert_to_bf16<<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>((const src_t *)vx, y, k); +} + +to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return convert_to_bf16_cuda<float>; + case GGML_TYPE_F16: + return convert_to_bf16_cuda<half>; + default: + return nullptr; + } +} + to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: @@ -996,6 +1052,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { return dequantize_row_iq3_s_cuda; case GGML_TYPE_F32: return convert_unary_cuda<float>; + case GGML_TYPE_BF16: + return convert_from_bf16_cuda; default: return nullptr; } @@ -1061,6 +1119,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq3_s_cuda; case GGML_TYPE_F16: return convert_unary_cuda<half>; + case GGML_TYPE_BF16: + return convert_from_bf16_cuda; default: return nullptr; } diff --git a/ggml/src/ggml-cuda/convert.cuh b/ggml/src/ggml-cuda/convert.cuh index 1fb53900..0efcecde 100644 --- a/ggml/src/ggml-cuda/convert.cuh +++ b/ggml/src/ggml-cuda/convert.cuh @@ -7,7 +7,10 @@ using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, in typedef to_t_cuda_t<float> to_fp32_cuda_t; typedef to_t_cuda_t<half> to_fp16_cuda_t; +typedef to_t_cuda_t<nv_bfloat16> to_bf16_cuda_t; to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type); to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type); + +to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type); diff --git a/ggml/src/ggml-cuda/vendors/cuda.h b/ggml/src/ggml-cuda/vendors/cuda.h index db9f6a16..840809a1 100644 --- a/ggml/src/ggml-cuda/vendors/cuda.h +++ b/ggml/src/ggml-cuda/vendors/cuda.h @@ -4,6 +4,7 @@ #include <cuda.h> #include <cublas_v2.h> #include <cuda_fp16.h> +#include <cuda_bf16.h> #if CUDART_VERSION < 11020 #define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h index d0c37725..d1d16431 100644 --- a/ggml/src/ggml-cuda/vendors/hip.h +++ b/ggml/src/ggml-cuda/vendors/hip.h @@ -3,6 +3,7 @@ #include <hip/hip_runtime.h> #include <hipblas/hipblas.h> #include <hip/hip_fp16.h> +#include <hip/hip_bf16.h> #ifdef __HIP_PLATFORM_AMD__ // for rocblas_initialize() #include "rocblas/rocblas.h" |