summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-09-14 20:02:32 +0300
committerGitHub <noreply@github.com>2024-09-14 20:02:32 +0300
commit6f11c959949f3064aa58f0f787e531beed751765 (patch)
treefeaedcb28e3e5b41f15e56da4a1eb68d362569cf
parent76be98fdec39fed876803d54e83cb4d6f2b50f90 (diff)
Adding bf16 support to CUDA (#40)
* Adding bf16 support to CUDA - matrix multipications * Adding bf16 support to CUDA - cleanup * Adapt to latest master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r--ggml/src/ggml-cuda.cu35
-rw-r--r--ggml/src/ggml-cuda/convert.cu60
-rw-r--r--ggml/src/ggml-cuda/convert.cuh3
-rw-r--r--ggml/src/ggml-cuda/vendors/cuda.h1
-rw-r--r--ggml/src/ggml-cuda/vendors/hip.h1
5 files changed, 99 insertions, 1 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index 29fb5075..87d7e17e 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -1227,7 +1227,39 @@ static void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = ggml_cuda_info().devices[id].cc;
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
+ if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
+
+ ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
+ if (src1->type != GGML_TYPE_BF16) {
+ const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type);
+ GGML_ASSERT(to_bf16_cuda != nullptr);
+ size_t ne = src1_ncols*ne10;
+ src1_as_bf16.alloc(ne);
+ to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), src1_ncols, ne10, stream);
+ }
+ const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get();
+ const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i;
+ ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols);
+
+ const float alpha_f32 = 1.0f;
+ const float beta_f32 = 0.0f;
+
+ CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
+ CUBLAS_CHECK(
+ cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
+ row_diff, src1_ncols, ne10,
+ &alpha_f32, src0_ptr, CUDA_R_16BF, ne00,
+ src1_ptr, CUDA_R_16BF, ne10,
+ &beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc,
+ CUBLAS_COMPUTE_32F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16);
+ to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff, src1_ncols, stream);
+ return;
+ }
+
+ if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
@@ -2764,6 +2796,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
switch (a->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu
index 03de64ef..4b1be7c1 100644
--- a/ggml/src/ggml-cuda/convert.cu
+++ b/ggml/src/ggml-cuda/convert.cu
@@ -926,6 +926,37 @@ static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __res
y[i] = x[i];
}
+template <typename dst_t>
+static __global__ void convert_from_bf16(const nv_bfloat16 * __restrict__ x, dst_t * __restrict__ y, const int64_t k) {
+ const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ y[i] = __bfloat162float(x[i]);
+}
+
+static __global__ void convert_to_bf16(const float * __restrict__ x, nv_bfloat16 * __restrict__ y, const int64_t k) {
+ const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ y[i] = __float2bfloat16(x[i]);
+}
+
+static __global__ void convert_to_bf16(const half * __restrict__ x, nv_bfloat16 * __restrict__ y, const int64_t k) {
+ const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ y[i] = __float2bfloat16((float)x[i]);
+}
+
template <typename src_t, typename dst_t>
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
const int64_t k = nrows * n_per_row;
@@ -933,6 +964,31 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
+template <typename dst_t>
+static void convert_from_bf16_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
+ const int64_t k = nrows*n_per_row;
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ convert_from_bf16<<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>((const nv_bfloat16 *)vx, y, k);
+}
+
+template <typename src_t>
+static void convert_to_bf16_cuda(const void * __restrict__ vx, nv_bfloat16 * __restrict__ y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
+ const int64_t k = nrows*n_per_row;
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ convert_to_bf16<<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>((const src_t *)vx, y, k);
+}
+
+to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_F32:
+ return convert_to_bf16_cuda<float>;
+ case GGML_TYPE_F16:
+ return convert_to_bf16_cuda<half>;
+ default:
+ return nullptr;
+ }
+}
+
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
@@ -996,6 +1052,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
+ case GGML_TYPE_BF16:
+ return convert_from_bf16_cuda;
default:
return nullptr;
}
@@ -1061,6 +1119,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
+ case GGML_TYPE_BF16:
+ return convert_from_bf16_cuda;
default:
return nullptr;
}
diff --git a/ggml/src/ggml-cuda/convert.cuh b/ggml/src/ggml-cuda/convert.cuh
index 1fb53900..0efcecde 100644
--- a/ggml/src/ggml-cuda/convert.cuh
+++ b/ggml/src/ggml-cuda/convert.cuh
@@ -7,7 +7,10 @@ using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, in
typedef to_t_cuda_t<float> to_fp32_cuda_t;
typedef to_t_cuda_t<half> to_fp16_cuda_t;
+typedef to_t_cuda_t<nv_bfloat16> to_bf16_cuda_t;
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
+
+to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type);
diff --git a/ggml/src/ggml-cuda/vendors/cuda.h b/ggml/src/ggml-cuda/vendors/cuda.h
index db9f6a16..840809a1 100644
--- a/ggml/src/ggml-cuda/vendors/cuda.h
+++ b/ggml/src/ggml-cuda/vendors/cuda.h
@@ -4,6 +4,7 @@
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
+#include <cuda_bf16.h>
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index d0c37725..d1d16431 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -3,6 +3,7 @@
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
+#include <hip/hip_bf16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"