summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXuan Son Nguyen <thichthat@gmail.com>2024-04-28 17:36:18 +0200
committerGitHub <noreply@github.com>2024-04-28 17:36:18 +0200
commit7bb36ccf91b8a2e92b182dd75624f1fd7cb205ac (patch)
treeab92b14895245a23730553dc06af68e75995c69c
parentce023f6f2ff34fbe840e32e65d443d2fed7393de (diff)
gguf : enforce that tensor names are unique (#6905)
* not allow adding duplicated tensor name * no duplicated tensor while reading gguf * typo * throw exception inside llama_model_loader Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com>
-rw-r--r--ggml.c12
-rw-r--r--gguf-py/gguf/gguf_reader.py8
-rw-r--r--gguf-py/gguf/gguf_writer.py5
-rw-r--r--llama.cpp8
4 files changed, 32 insertions, 1 deletions
diff --git a/ggml.c b/ggml.c
index 34eef23f..cb273061 100644
--- a/ggml.c
+++ b/ggml.c
@@ -20819,6 +20819,14 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// TODO: return an error instead of crashing with GGML_ASSERT
gguf_tensor_info_sanitize(info);
+ // make sure there is no duplicated tensor names
+ for (uint64_t j = 0; j < i; ++j) {
+ if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
+ fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
+ ok = false;
+ }
+ }
+
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
@@ -21355,6 +21363,10 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
+ if (gguf_find_tensor(ctx, tensor->name) != -1) {
+ GGML_ASSERT(false && "duplicated tensor name");
+ }
+
const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py
index 33afac55..48ef6d4a 100644
--- a/gguf-py/gguf/gguf_reader.py
+++ b/gguf-py/gguf/gguf_reader.py
@@ -234,8 +234,14 @@ class GGUFReader:
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
tensors = []
+ tensor_names = set() # keep track of name to prevent duplicated tensors
for field in fields:
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
+ # check if there's any tensor having same name already in the list
+ tensor_name = str(bytes(name_data), encoding = 'utf-8')
+ if tensor_name in tensor_names:
+ raise ValueError(f'Found duplicated tensor with name {tensor_name}')
+ tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = np.prod(dims)
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
@@ -267,7 +273,7 @@ class GGUFReader:
item_count = n_bytes
item_type = np.uint8
tensors.append(ReaderTensor(
- name = str(bytes(name_data), encoding = 'utf-8'),
+ name = tensor_name,
tensor_type = ggml_type,
shape = dims,
n_elements = n_elems,
diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py
index e3dbca45..ec44ac9f 100644
--- a/gguf-py/gguf/gguf_writer.py
+++ b/gguf-py/gguf/gguf_writer.py
@@ -63,6 +63,7 @@ class GGUFWriter:
self.kv_data_count = 0
self.ti_data = bytearray()
self.ti_data_count = 0
+ self.ti_names = set()
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = []
@@ -197,6 +198,10 @@ class GGUFWriter:
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
+ if name in self.ti_names:
+ raise ValueError(f'Duplicated tensor name {name}')
+ self.ti_names.add(name)
+
encoded_name = name.encode("utf8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
diff --git a/llama.cpp b/llama.cpp
index 49f2b559..3c64622d 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -3120,9 +3120,17 @@ struct llama_model_loader {
fver = (enum llama_fver) gguf_get_version(meta);
+ std::set<std::string> tensor_names;
for (auto & w : weights) {
n_elements += ggml_nelements(w.tensor);
n_bytes += ggml_nbytes(w.tensor);
+ // make sure there is no duplicated tensor names
+ const std::string name(w.tensor->name);
+ auto found = tensor_names.find(name);
+ if (found != tensor_names.end()) {
+ throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
+ }
+ tensor_names.insert(name);
}
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",