diff options
author | Iwan Kawrakow <iwan.kawrakow@gmail.com> | 2024-06-08 13:47:02 +0300 |
---|---|---|
committer | Iwan Kawrakow <iwan.kawrakow@gmail.com> | 2024-06-22 12:02:50 +0300 |
commit | 8a80a31ddd5f3239ab1da6deff1efcdf4f43d1d9 (patch) | |
tree | 78ccaf60d6f17dbead0658ac1057006920d5c324 | |
parent | 81409a02f3c10a74ea23167f1782a951d026ab49 (diff) |
iqk_mul_mat: fix q8_0
I was happily using _mm256_packs_epi32() to pack the
q8_0 x q8_0 dot products back to int16_t, and getting useful
results. But theoretically this can overflow, so it is
better to use _mm256_unpacklo_ and _mm256_unpackhi_ to combine
the 4 dot products using int32_t additions. This is (almost)
as fast, unlike _mm256_hadd_epi32(), which seems excessively
slow on the Ryzen-7950X.
-rw-r--r-- | iqk_mul_mat.cpp | 56 |
1 files changed, 42 insertions, 14 deletions
diff --git a/iqk_mul_mat.cpp b/iqk_mul_mat.cpp index 4d33e2b4..e13d0a02 100644 --- a/iqk_mul_mat.cpp +++ b/iqk_mul_mat.cpp @@ -1746,19 +1746,41 @@ struct UnsignedDot { return helper.dot(x, y); } }; -template <typename Q8, typename Q8x4, typename Dot> struct Sum4 { + +template <typename Q8, typename Q8x4, typename Dot, bool can_pack = true> struct Sum4 { Dot dot; inline __m256i compute(const __m256i * qx, const Q8 * y) const { const Q8x4 * y4 = (const Q8x4 *)y; - const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); - const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); - const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); - const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); - const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1 - const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3 - return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3 + const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0 + const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1 + const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2 + const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3 + if constexpr (can_pack) { + const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1 + const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3 + return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3 + } else { + // Note to myself: this is much faster than using _mm256_hadd_epi32() + auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1 + auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3 + return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3 + } } }; +// If I use this, it negatively impacts q4_1/q5_1 performance. +//template <typename Q8, typename Q8x4, typename Dot> struct Sum4 { +// Dot dot; +// inline __m256i compute(const __m256i * qx, const Q8 * y) const { +// const Q8x4 * y4 = (const Q8x4 *)y; +// const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0 +// const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1 +// const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2 +// const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3 +// auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1 +// auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3 +// return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3 +// } +//}; struct ScaleHelperQ8_0 { inline __m128 prepare4(const block_q8_0 * y) { @@ -1908,11 +1930,12 @@ using AccumType1 = AccumT<MinusType1<nrc_y>, nrc_y, is_multiple_of_4>; using Sum4Type0 = Sum4<block_q8_0, block_q8_0_x4, SignedDot>; using Sum4Type1 = Sum4<block_q8_1, block_q8_1_x4, UnsignedDot>; +using Sum4TypeQ80 = Sum4<block_q8_0, block_q8_0_x4, SignedDot, false>; -template <typename Unpacker, typename Sum4Type, typename AccumType, typename Scales, typename Q8, int nrc_y> +template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y> void mul_mat_qX_q8_Helper(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) { Unpacker unp(vx, bx); - Sum4Type sum4; + typename Unpacker::Sum4T sum4; Scales scales; for (int ix = 0; ix < nrc_x; ++ix) { unp.set_row(ix); @@ -1927,11 +1950,11 @@ void mul_mat_qX_0_q8_0_T(int n, const void * vx, size_t bx, const DataInfo& info Q8<nrc_y, block_q8_0> q8(info); int nb = n/Unpacker::block_size(); if (nb%4 == 0) { - mul_mat_qX_q8_Helper<Unpacker, Sum4Type0, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>( nb, vx, bx, info, q8.y, nrc_x ); } else { - mul_mat_qX_q8_Helper<Unpacker, Sum4Type0, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>( nb, vx, bx, info, q8.y, nrc_x ); } @@ -1943,11 +1966,11 @@ void mul_mat_qX_1_q8_1_T(int n, const void * vx, size_t bx, const DataInfo& info Q8<nrc_y, block_q8_1> q8(info); int nb = n/Unpacker::block_size(); if (nb%4 == 0) { - mul_mat_qX_q8_Helper<Unpacker, Sum4Type1, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>( nb, vx, bx, info, q8.y, nrc_x ); } else { - mul_mat_qX_q8_Helper<Unpacker, Sum4Type1, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>( nb, vx, bx, info, q8.y, nrc_x ); } @@ -2050,22 +2073,27 @@ struct Q_Unpacker { struct Q8_0_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0, Q8_0_Dequantizer> { Q8_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; inline static int block_size() { return QK8_0; } }; struct Q4_0_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0, Q4_0_Dequantizer> { Q4_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; inline static int block_size() { return QK4_0; } }; struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> { Q5_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; inline static int block_size() { return QK5_0; } }; struct Q4_1_Unpacker final : public Q_Unpacker<block_q4_1, ScaleHelperQ_1, Q4_1_Dequantizer> { Q4_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4Type1; inline static int block_size() { return QK4_1; } }; struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_Dequantizer> { Q5_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4Type1; inline static int block_size() { return QK4_1; } }; |