diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-21 11:26:35 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-21 11:26:35 +0100 |
commit | 93419de68f90fede135480a2717785d519df9f42 (patch) | |
tree | 615164646770d7fdb596f04af2d887a8441f3afb | |
parent | a867b919ca1e26cc828f98c35b4c6926e8e54762 (diff) |
IQ2_S_R4 (#156)
* iq2_s_r4: Zen4
* Minor
* iq2_s_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | examples/quantize/quantize.cpp | 1 | ||||
-rw-r--r-- | ggml/include/ggml.h | 2 | ||||
-rw-r--r-- | ggml/src/ggml-common.h | 9 | ||||
-rw-r--r-- | ggml/src/ggml-quants.c | 1 | ||||
-rw-r--r-- | ggml/src/ggml.c | 23 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 204 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 87 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.h | 6 | ||||
-rw-r--r-- | include/llama.h | 1 | ||||
-rw-r--r-- | src/llama.cpp | 30 |
10 files changed, 355 insertions, 9 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index dbae9792..1599405b 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -27,6 +27,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = { { "IQ2_XS_R4",LLAMA_FTYPE_MOSTLY_IQ2_XS_R4,"IQ2_XS repacked", }, { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, + { "IQ2_M_R4", LLAMA_FTYPE_MOSTLY_IQ2_M_R4, " 2.7 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", }, { "IQ1_BN", LLAMA_FTYPE_MOSTLY_IQ1_BN, " 1.62 bpw quantization (Bitnet)", }, diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 60f787ad..002388cb 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -422,6 +422,7 @@ extern "C" { GGML_TYPE_IQ2_XS_R4 = 217, GGML_TYPE_IQ3_XXS_R4= 218, GGML_TYPE_IQ4_NL_R4 = 220, + GGML_TYPE_IQ2_S_R4 = 222, GGML_TYPE_IQ4_XS_R4 = 223, GGML_TYPE_BF16_R16 = 230, GGML_TYPE_Q6_0_R4 = 233, @@ -503,6 +504,7 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_XS_R4 = 216, // except 1d tensors GGML_FTYPE_MOSTLY_IQ3_XXS_R4= 217, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_NL_R4 = 219, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_S_R4 = 221, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_XS_R4 = 222, // except 1d tensors GGML_FTYPE_MOSTLY_BF16_R16 = 224, // except 1d tensors GGML_FTYPE_MOSTLY_Q6_0_R4 = 227, // except 1d tensors diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 2534b461..6964f5e6 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -428,6 +428,15 @@ typedef struct { } block_iq2_s; static_assert(sizeof(block_iq2_s) == sizeof(ggml_half) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); +typedef struct { + ggml_half d[4]; + uint8_t qs[QK_K/2]; + uint8_t qh[QK_K/8]; + uint8_t signs[QK_K/2]; + uint8_t scales[QK_K/8]; +} block_iq2_s_r4; +static_assert(sizeof(block_iq2_s_r4) == 4*sizeof(block_iq2_s), "wrong iq2_s_r4 block size/padding"); + // (Almost) "true" 3-bit quantization. // Due to the need to use blocks as per ggml design, it ends up using // 3.0625 bpw because of the 16-bit scale for each block of 256. diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index 1f56ec06..bf028c0c 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -15201,6 +15201,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte case GGML_TYPE_IQ2_XXS_R4: break; case GGML_TYPE_IQ2_XS_R4: break; case GGML_TYPE_IQ3_XXS_R4: break; + case GGML_TYPE_IQ2_S_R4: break; case GGML_TYPE_Q4_0_R4: break; case GGML_TYPE_Q5_0_R4: break; case GGML_TYPE_Q6_0_R4: break; diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 0c3be11c..2cece547 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1096,6 +1096,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_IQ2_S_R4] = { + .type_name = "iq2_s_r4", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_s_r4, + .from_float = quantize_row_iq2_s_r4, + .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_r4_ref, + .vec_dot = vec_dot_iq2_s_r4_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 0, + }, [GGML_TYPE_IQ1_S] = { .type_name = "iq1_s", .blck_size = QK_K, @@ -4270,6 +4283,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ6_K: wtype = GGML_TYPE_IQ6_K; break; case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; + case GGML_FTYPE_MOSTLY_IQ2_S_R4: wtype = GGML_TYPE_IQ2_S_R4; break; case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break; case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break; case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break; @@ -10814,6 +10828,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -11277,6 +11292,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -11437,6 +11453,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -14643,6 +14660,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -15043,6 +15061,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -15337,6 +15356,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: case GGML_TYPE_Q4_0_8_8: @@ -15960,6 +15980,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ6_K: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_Q8_K: case GGML_TYPE_Q8_K64: case GGML_TYPE_Q8_K16: @@ -22702,6 +22723,7 @@ void ggml_quantize_init(enum ggml_type type) { switch (type) { case GGML_TYPE_IQ2_XXS_R4: iq2xs_init_impl(GGML_TYPE_IQ2_XXS); break; case GGML_TYPE_IQ2_XS_R4: iq2xs_init_impl(GGML_TYPE_IQ2_XS); break; + case GGML_TYPE_IQ2_S_R4: iq2xs_init_impl(GGML_TYPE_IQ2_S); break; case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: @@ -22786,6 +22808,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ3_XXS_R4:result = quantize_iq3_xxs_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_S_R4:result = quantize_iq2_s_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index a21700a9..081ebb57 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -3426,6 +3426,128 @@ static void mul_mat_iq2_xs_r4_q8_k(int n, const void * vx, size_t bx, const Data } template <int nrc_y> +static void mul_mat_iq2_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); +#endif + __m256 acc[nrc_y] = {}; +#ifdef HAVE_FANCY_SIMD + __m256i shuffles[2] = { + _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100), + _mm256_set_epi64x(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; + __m256i isum[2*nrc_y] = {}; +#else + __m256i shuffles[4] = { + MM256_SET_M128I(_mm_set1_epi16(0x0302), _mm_set1_epi16(0x0100)), + MM256_SET_M128I(_mm_set1_epi16(0x0706), _mm_set1_epi16(0x0504)), + MM256_SET_M128I(_mm_set1_epi16(0x0b0a), _mm_set1_epi16(0x0908)), + MM256_SET_M128I(_mm_set1_epi16(0x0f0e), _mm_set1_epi16(0x0d0c)), + }; + __m256i isum[nrc_y == 1 ? 4 : nrc_y] = {}; +#endif + __m256i qx[4]; + auto grid = iq2s_grid; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto s32 = (const uint32_t *)iq2[ibl].scales; + auto ql = iq2[ibl].qs; + auto qh = iq2[ibl].qh; + for (int ib = 0; ib < QK_K/32; ++ib) { + qx[0] = _mm256_set_epi64x(grid[ql[ 3] | ((qh[0] << 2) & 0x300)], grid[ql[ 2] | ((qh[0] << 4) & 0x300)], grid[ql[ 1] | ((qh[0] << 6) & 0x300)], grid[ql[ 0] | ((qh[0] << 8) & 0x300)]); + qx[1] = _mm256_set_epi64x(grid[ql[ 7] | ((qh[1] << 2) & 0x300)], grid[ql[ 6] | ((qh[1] << 4) & 0x300)], grid[ql[ 5] | ((qh[1] << 6) & 0x300)], grid[ql[ 4] | ((qh[1] << 8) & 0x300)]); + qx[2] = _mm256_set_epi64x(grid[ql[11] | ((qh[2] << 2) & 0x300)], grid[ql[10] | ((qh[2] << 4) & 0x300)], grid[ql[ 9] | ((qh[2] << 6) & 0x300)], grid[ql[ 8] | ((qh[2] << 8) & 0x300)]); + qx[3] = _mm256_set_epi64x(grid[ql[15] | ((qh[3] << 2) & 0x300)], grid[ql[14] | ((qh[3] << 4) & 0x300)], grid[ql[13] | ((qh[3] << 6) & 0x300)], grid[ql[12] | ((qh[3] << 8) & 0x300)]); + ql += 16; qh += 4; + auto signs128 = _mm_loadu_si128((const __m128i*)iq2[ibl].signs + ib); + auto scales = _mm_set1_epi32(s32[ib]); + scales = _mm_and_si128(_mm_unpacklo_epi8(scales, _mm_srli_epi16(scales, 4)), _mm_set1_epi8(0xf)); + scales = _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi8(1)); + auto scales16 = _mm256_cvtepi8_epi16(scales); // 0...7, 0...7 +#ifdef HAVE_FANCY_SIMD + __m256i scs[2] = { _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]) }; + auto mask = (const __mmask32 *)&signs128; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_mask_sub_epi8(y, mask[0], _mm256_setzero_si256(), y)); // blocks: 0,0,0,0, 1,1,1,1, row 0 + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], _mm256_mask_sub_epi8(y, mask[1], _mm256_setzero_si256(), y)); // blocks: 2,2,2,2, 3,3,3,3, row 1 + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], _mm256_mask_sub_epi8(y, mask[2], _mm256_setzero_si256(), y)); // blocks: 4,4,4,4, 5,5,5,5, row 2 + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], _mm256_mask_sub_epi8(y, mask[3], _mm256_setzero_si256(), y)); // blocks: 6,6,6,6, 7,7,7,7, row 3 + auto s12 = _mm256_packs_epi32(sumi1, sumi2); // 0,0,0,0, 2,2,2,2, 1,1,1,1, 3,3,3,3 + auto s34 = _mm256_packs_epi32(sumi3, sumi4); // 4,4,4,4, 6,6,6,6, 5,5,5,5, 7,7,7,7 + isum[2*iy+0] = _mm256_add_epi32(isum[2*iy+0], _mm256_madd_epi16(scs[0], s12)); + isum[2*iy+1] = _mm256_add_epi32(isum[2*iy+1], _mm256_madd_epi16(scs[1], s34)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + __m256i scs[4] = { + _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]), + _mm256_shuffle_epi8(scales16, shuffles[2]), _mm256_shuffle_epi8(scales16, shuffles[3]), + }; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + if constexpr (nrc_y == 1) { + isum[0] = _mm256_add_epi32(isum[0], _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1)))); + isum[1] = _mm256_add_epi32(isum[1], _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2)))); + isum[2] = _mm256_add_epi32(isum[2], _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3)))); + isum[3] = _mm256_add_epi32(isum[3], _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4)))); + } else { + auto sumi1 = _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1))); // blocks 4x0, 4x1, row 0 + auto sumi2 = _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2))); // blocks 4x2, 4x3, row 1 + auto sumi3 = _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3))); // blocks 4x4, 4x5, row 2 + auto sumi4 = _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4))); // blocks 4x6, 4x7, row 3 + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], sumi); + } + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_hadd_epi32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[2*iy+0] = isum[2*iy+1] = _mm256_setzero_si256(); +#else + if constexpr (nrc_y == 1) { + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[0], isum[1]), _mm256_unpackhi_epi32(isum[0], isum[1])); + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[2], isum[3]), _mm256_unpackhi_epi32(isum[2], isum[3])); + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[0] = isum[1] = isum[2] = isum[3] = _mm256_setzero_si256(); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } +#endif + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <int nrc_y> static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<nrc_y, block_q8_K> q8(info); @@ -6938,6 +7060,18 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { mm.funcs[7] = mul_mat_iq2_xs_r4_q8_k<8>; expected_typeB = GGML_TYPE_Q8_K; break; + case GGML_TYPE_IQ2_S_R4: + assert (ne00 % QK_K == 0); + mm.funcs[0] = mul_mat_iq2_s_r4_q8_k<1>; + mm.funcs[1] = mul_mat_iq2_s_r4_q8_k<2>; + mm.funcs[2] = mul_mat_iq2_s_r4_q8_k<3>; + mm.funcs[3] = mul_mat_iq2_s_r4_q8_k<4>; + mm.funcs[4] = mul_mat_iq2_s_r4_q8_k<5>; + mm.funcs[5] = mul_mat_iq2_s_r4_q8_k<6>; + mm.funcs[6] = mul_mat_iq2_s_r4_q8_k<7>; + mm.funcs[7] = mul_mat_iq2_s_r4_q8_k<8>; + expected_typeB = GGML_TYPE_Q8_K; + break; case GGML_TYPE_IQ3_XXS_R4: assert (ne00 % QK_K == 0); mm.funcs[0] = mul_mat_iq3_xxs_r4_q8_k<1>; @@ -9939,6 +10073,72 @@ static void mul_mat_iq2_xs_r4_q8_k(int n, const void * vx, size_t bx, const Data } template <int nrc_y> +static void mul_mat_iq2_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[2*nrc_y] = {}; + int8x16_t qx[8]; + uint16x8x4_t scales16; + SignHelper sh; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d)); + auto qs = iq2[ibl].qs; + auto qh = iq2[ibl].qh; + for (int is = 0; is < 2; ++is) { + auto scale_bits = vld1q_u8(iq2[ibl].scales + 16*is); + auto scales1 = vandq_u8(scale_bits, vdupq_n_u8(0xf)); + auto scales2 = vshrq_n_u8(scale_bits, 4); + scales1 = vorrq_u8(vshlq_n_u8(scales1, 1), vdupq_n_u8(1)); + scales2 = vorrq_u8(vshlq_n_u8(scales2, 1), vdupq_n_u8(1)); + auto s1 = vzip1q_u8(scales1, scales2); + auto s2 = vzip2q_u8(scales1, scales2); + scales16.val[0] = vmovl_u8(vget_low_u8 (s1)); + scales16.val[1] = vmovl_u8(vget_high_u8(s1)); + scales16.val[2] = vmovl_u8(vget_low_u8 (s2)); + scales16.val[3] = vmovl_u8(vget_high_u8(s2)); + for (int ib = 0; ib < QK_K/64; ++ib) { + auto signs128 = vld1q_u8(iq2[ibl].signs + 64*is + 16*ib); + sh.init(); + for (int i = 0; i < 4; ++i) { + qx[2*i+0] = vreinterpretq_s8_u64(uint64x2_t{iq2s_grid[qs[4*i+0] | ((qh[i] << 8) & 0x300)], iq2s_grid[qs[4*i+1] | ((qh[i] << 6) & 0x300)]}); + sh.apply_signs_1((uint8x16_t *)qx+2*i+0, signs128); + qx[2*i+1] = vreinterpretq_s8_u64(uint64x2_t{iq2s_grid[qs[4*i+2] | ((qh[i] << 4) & 0x300)], iq2s_grid[qs[4*i+3] | ((qh[i] << 2) & 0x300)]}); + sh.apply_signs_1((uint8x16_t *)qx+2*i+1, signs128); + } + qs += 16; qh += 4; + auto s32_1 = vmovl_u16(vget_low_u16 (scales16.val[ib])); + auto s32_2 = vmovl_u16(vget_high_u16(scales16.val[ib])); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 128*is + 32*ib); + auto sumi1 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[0], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[1], y.val[1])); + auto sumi2 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[2], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[3], y.val[1])); + auto sumi3 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[4], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[5], y.val[1])); + auto sumi4 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[6], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[7], y.val[1])); + auto sumi12 = vpaddq_s32(sumi1, sumi2); // blocks 0,1,2,3 in rows 0,1 + auto sumi34 = vpaddq_s32(sumi3, sumi4); // blocks 4,5,6,7 in rows 2,3 + isum[2*iy+0] = vmlaq_s32(isum[2*iy+0], s32_1, sumi12); + isum[2*iy+1] = vmlaq_s32(isum[2*iy+1], s32_2, sumi34); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = vpaddq_s32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(sumi)); + isum[2*iy] = isum[2*iy+1] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vmulq_f32(vdupq_n_f32(0.125f), acc[iy])); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<nrc_y, block_q8_K> q8(info); @@ -11293,6 +11493,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq2_xs_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K; break; + case GGML_TYPE_IQ2_S_R4: + SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq2_s_r4_q8_k); + expected_Btype = GGML_TYPE_Q8_K; + break; case GGML_TYPE_IQ3_XXS_R4: SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq3_xxs_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K; diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index e369a2f0..6683ef14 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -5507,6 +5507,93 @@ void vec_dot_iq2_xs_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_t } // +// ========================================= iq2_s_r4 +// + +void quantize_row_iq2_s_r4_ref(const float * x, block_iq2_s_r4 * y, int64_t k) { + quantize_iq2_s_r4(x, (void *)y, 4, k/4, nullptr); +} + +void quantize_row_iq2_s_r4(const float * x, void * y, int64_t k) { + quantize_iq2_s_r4(x, y, 4, k/4, nullptr); +} + +static void repack_iq2_s(int nrows, int n_per_row, const block_iq2_s * x, block_iq2_s_r4 * y) { + GGML_ASSERT(nrows%4 == 0); + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + const block_iq2_s * x4[4]; + for (int row = 0; row < nrows; row += 4) { + for (int k = 0; k < 4; ++k) x4[k] = x + nblock*k; + for (int ibl = 0; ibl < nblock; ++ibl) { + for (int k = 0; k < 4; ++k) { + auto signs = x4[k][ibl].qs + QK_K/8; + y[ibl].d[k] = x4[k][ibl].d; + for (int ib = 0; ib < QK_K/32; ++ib) { + y[ibl].scales[4*ib+k] = x4[k][ibl].scales[ib]; + for (int i = 0; i < 4; ++i) { + y[ibl].qs[16*ib+4*k+i] = x4[k][ibl].qs[4*ib+i]; + y[ibl].signs[16*ib+4*k+i] = signs[4*ib+i]; + } + y[ibl].qh[4*ib+k] = x4[k][ibl].qh[ib]; + } + } + } + x += 4*nblock; + y += nblock; + } +} + +size_t quantize_iq2_s_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(nrows%4 == 0); + GGML_ASSERT(n_per_row%QK_K == 0); + char * qcur = (char *)dst; + auto row_size = ggml_row_size(GGML_TYPE_IQ2_S, n_per_row); + std::vector<char> qtmp(4*row_size); + for (int row = 0; row < nrows; row += 4) { + quantize_iq2_s(src, (void *)qtmp.data(), 4, n_per_row, imatrix); + repack_iq2_s(4, n_per_row, (const block_iq2_s *)qtmp.data(), (block_iq2_s_r4 *)qcur); + qcur += 4*row_size; + src += 4*n_per_row; + } + return nrows*row_size; +} + +void dequantize_row_iq2_s_r4(const block_iq2_s_r4 * x, float * y, int64_t k) { + auto n_per_row = k/4; + float * y4[4] = {y, y + n_per_row, y + 2*n_per_row, y + 3*n_per_row}; + int nblock = n_per_row/QK_K; + for (int ibl = 0; ibl < nblock; ++ibl) { + for (int k = 0; k < 4; ++k) { + const float d = 0.125f*GGML_FP16_TO_FP32(x[ibl].d[k]); + for (int ib = 0; ib < QK_K/32; ++ib) { + float dl1 = d * (2*(x[ibl].scales[4*ib+k] & 0xf) + 1); + float dl2 = d * (2*(x[ibl].scales[4*ib+k] >> 4) + 1); + for (int i = 0; i < 4; ++i) { + auto val = (const int8_t *)(iq2s_grid + (x[ibl].qs[16*ib+4*k+i] | ((x[ibl].qh[4*ib+k] << (8 - 2*i)) & 0x300))); + auto signs = x[ibl].signs[16*ib+4*k+i]; + float dl = i < 2 ? dl1 : dl2; + for (int j = 0; j < 8; ++j) y4[k][QK_K*ibl+32*ib+8*i+j] = dl * val[j] * (signs & (1 << j) ? -1 : 1); + } + } + } + } +} + +void vec_dot_iq2_s_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_S_R4, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + GGML_ASSERT(n%QK4_NL == 0); + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); +} + +// // ========================================= iq3_xxs_r4 // diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h index 7b183956..f62f055a 100644 --- a/ggml/src/iqk/iqk_quantize.h +++ b/ggml/src/iqk/iqk_quantize.h @@ -181,6 +181,12 @@ size_t quantize_iq2_xs_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT void dequantize_row_iq2_xs_r4(const block_iq2_xs_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void vec_dot_iq2_xs_r4_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void quantize_row_iq2_s_r4_ref(const float * GGML_RESTRICT x, block_iq2_s_r4 * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_s_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +size_t quantize_iq2_s_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +void dequantize_row_iq2_s_r4(const block_iq2_s_r4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void vec_dot_iq2_s_r4_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void quantize_row_iq3_xxs_r4_ref(const float * GGML_RESTRICT x, block_iq3_xxs_r4 * GGML_RESTRICT y, int64_t k); void quantize_row_iq3_xxs_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); size_t quantize_iq3_xxs_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); diff --git a/include/llama.h b/include/llama.h index 8c8fbe6a..b7822307 100644 --- a/include/llama.h +++ b/include/llama.h @@ -192,6 +192,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 = 220, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 = 223, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 = 225, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_M_R4 = 229, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_XS_R4 = 230, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q6_0_R4 = 335, // except 1d tensors LLAMA_FTYPE_MOSTLY_BF16_R16 = 232, // except 1d tensors diff --git a/src/llama.cpp b/src/llama.cpp index eac0d866..42193411 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -3854,7 +3854,8 @@ struct llama_model_loader { case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_XS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS_R4; break; case GGML_TYPE_IQ2_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KS; break; - case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; + case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_M; break; + case GGML_TYPE_IQ2_S_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_M_R4;break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ3_XXS_R4: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; @@ -4586,6 +4587,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_IQ2_KS: return "IQ2_KS - 2.1875 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_M_R4: return "IQ2_M_R4 - 2.7 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4: return "IQ3_XXS_R4 - 3.0625 bpw"; @@ -15799,7 +15801,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K || ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || - ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4) { + ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4) { new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { @@ -15823,7 +15825,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { new_type = GGML_TYPE_Q2_K; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { @@ -15896,22 +15898,24 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4) { + bool is_iq2_m = ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4; if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_IQ4_K; else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ3_K; - else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || is_iq2_m ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { new_type = GGML_TYPE_Q4_K; } else if (name.find("attn_qkv.weight") != std::string::npos) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_K; + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || is_iq2_m ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_K; } else if (name.find("ffn_down") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || is_iq2_m ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } @@ -15920,7 +15924,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || is_iq2_m) new_type = GGML_TYPE_IQ3_S; } } } else if (name.find("attn_v.weight") != std::string::npos) { @@ -16190,7 +16194,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type == GGML_TYPE_Q5_K_R4 || new_type == GGML_TYPE_Q3_K_R4 || new_type == GGML_TYPE_Q2_K_R4 || new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4|| new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4 || - new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4) { + new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4 || + new_type == GGML_TYPE_IQ2_S_R4) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { @@ -16214,6 +16219,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n case GGML_TYPE_IQ2_XS_R4: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_S_R4: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_XXS_R4: case GGML_TYPE_IQ3_S: @@ -16348,6 +16354,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_IQ2_KS: default_type = GGML_TYPE_IQ2_KS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; + case LLAMA_FTYPE_MOSTLY_IQ2_M_R4:default_type = GGML_TYPE_IQ2_S_R4;break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4: default_type = GGML_TYPE_IQ3_XXS_R4; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; @@ -16701,6 +16708,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XS_R4 || new_type == GGML_TYPE_IQ2_S || + new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0))) { @@ -16809,6 +16817,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_XS; else chunk_size_multiplier = 4; } + else if (new_type == GGML_TYPE_IQ2_S_R4) { + if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_S; + else chunk_size_multiplier = 4; + } else if (new_type == GGML_TYPE_IQ3_XXS_R4) { if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_XXS; else chunk_size_multiplier = 4; |