diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-09-10 09:43:05 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-09-10 09:43:05 +0300 |
commit | a1f7a03f500451be80ec4aeae44665c58cde311f (patch) | |
tree | 0373ddcc1eaf00fa09d368fe5b83c739c5257b06 | |
parent | 918ada20faf7747bbda6b78503b5d72a90157844 (diff) |
IQ1_TN Metal implementation (#46)
* iq1_tn: Metal implementation
Rquires to change the get_rows and matrix multiplication kernels
to use a dequantizer type rather than a dequantization function.
But once this is done, we can simply reuse the iq1_bn implementation.
This change will also allow to add other quantization types that
have meta data (such as a row scale) stored at the beginning of
a row (or change existing quantization types to row-wise scales).
* Some cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | ggml/src/ggml-metal.m | 29 | ||||
-rw-r--r-- | ggml/src/ggml-metal.metal | 367 |
2 files changed, 314 insertions, 82 deletions
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index b3f6e60c..749396c9 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -93,6 +93,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_BN, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_TN, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_BN, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, @@ -130,6 +131,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_BN_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_BN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, @@ -162,6 +164,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_BN_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_BN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, @@ -191,6 +194,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, @@ -220,6 +224,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_BN_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_BN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, @@ -603,6 +608,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_BN, get_rows_iq1_bn, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_TN, get_rows_iq1_tn, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_BN, get_rows_iq2_bn, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN, get_rows_iq2_tn, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); @@ -640,6 +646,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_BN_F32, mul_mv_iq1_bn_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_TN_F32, mul_mv_iq1_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_BN_F32, mul_mv_iq2_bn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_TN_F32, mul_mv_iq2_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); @@ -672,6 +679,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_BN_F32, mul_mv_id_iq1_bn_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_TN_F32, mul_mv_id_iq1_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_BN_F32, mul_mv_id_iq2_bn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_TN_F32, mul_mv_id_iq2_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); @@ -701,6 +709,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F32, mul_mm_iq1_bn_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_TN_F32, mul_mm_iq1_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F32, mul_mm_iq2_bn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32, mul_mm_iq2_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); @@ -730,6 +739,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_BN_F32, mul_mm_id_iq1_bn_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_TN_F32, mul_mm_id_iq1_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_BN_F32, mul_mm_id_iq2_bn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32, mul_mm_id_iq2_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); @@ -1869,6 +1879,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F32 ].pipeline; break; + case GGML_TYPE_IQ1_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_TN_F32 ].pipeline; break; case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F32 ].pipeline; break; case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; @@ -2042,6 +2053,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_BN_F32].pipeline; } break; + case GGML_TYPE_IQ1_TN: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_TN_F32].pipeline; + } break; case GGML_TYPE_IQ2_BN: { nth0 = 4; @@ -2128,7 +2145,7 @@ static enum ggml_status ggml_metal_graph_compute( src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S|| src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K|| - src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN) { + src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN|| src0t == GGML_TYPE_IQ1_TN) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { @@ -2230,6 +2247,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_BN_F32 ].pipeline; break; + case GGML_TYPE_IQ1_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_TN_F32 ].pipeline; break; case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_BN_F32 ].pipeline; break; case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; @@ -2397,6 +2415,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_BN_F32].pipeline; } break; + case GGML_TYPE_IQ1_TN: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_TN_F32].pipeline; + } break; case GGML_TYPE_IQ2_BN: { nth0 = 4; @@ -2494,7 +2518,7 @@ static enum ggml_status ggml_metal_graph_compute( src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S|| src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K|| - src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN) { + src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN|| src0t == GGML_TYPE_IQ1_TN) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { @@ -2555,6 +2579,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break; case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_BN ].pipeline; break; + case GGML_TYPE_IQ1_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_TN ].pipeline; break; case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_BN ].pipeline; break; case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index d7af1800..e050fdc3 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -5367,6 +5367,107 @@ void kernel_mul_mv_iq1_bn_f32_impl( } } +// TODO: unify with kernel_mul_mv_iq1_bn_f32_impl +void kernel_mul_mv_iq1_tn_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_value, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_IQ1BN; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + // Why are we not passing in src0->nb[0]? + // But because we are not, we need to use this hack + const uint row_size = sizeof(block_iq1_tn)*(ne00/QK_K); + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = ((i12/r2)*ne01 + (i13/r3)*(ne01*ne02))*row_size; + device const char * cx = (device const char *) src0 + first_row*row_size + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; + float sumf[N_DST]={0.f}; + + const int nb32 = nb * (QK_IQ1BN / 32); + + const int ix = tiisg/2; + const int ir = tiisg%2; + + device const float * y4 = (device const float *)y + 32 * ix + 16 * ir; + + uint32_t aux32[2]; + + const float values[3] = {-1.f, 0.f, 1.f}; + + constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1}; + + for (int ib32 = ix; ib32 < nb32; ib32 += 16) { + + for (int j = 0; j < 16; ++j) yl[j] = y4[j]; + + const int ibl = ib32 / (QK_IQ1BN / 32); + const int ib = ib32 % (QK_IQ1BN / 32); + const int i16 = 2*ib + ir; + + device const half * dh = (device const half *)cx; + device const block_iq1_bn * xr = (device const block_iq1_bn *)(dh + 1) + ibl; + device const uint8_t * ql = xr->ql + 3*i16; + device const uint8_t * extra = (device const uint8_t *)&xr->extra; + + for (int row = 0; row < N_DST; row++) { + + float acc = 0; + int i = 0; + for (int k = 0; k < 3; ++k) { + uint8_t q = ql[k]; + for (int j = 0; j < 5; ++j) { + uint8_t v = k_mult[j]*q; + v = 3*v >> 8; //(v + (v >> 1)) >> 7; + acc += yl[i++] * values[v]; + } + } + uint8_t v = k_mult[i16]*extra[0]; + v = 3*v >> 8; //(v + (v >> 1)) >> 7; + acc += yl[15] * values[v]; + + sumf[row] += acc * (float)dh[0]; + + extra += row_size; + ql += row_size; + dh += row_size/2; + } + + y4 += 32 * 16; + } + + for (int row = 0; row < N_DST; row += 2) { + half2 r = {(half)sumf[row], (half)sumf[row+1]}; + r = simd_sum(r); + if (tiisg < 2) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row + tiisg] = r[tiisg]; + } + } +} + void kernel_mul_mv_iq2_bn_f32_impl( device const void * src0, device const float * src1, @@ -6290,6 +6391,34 @@ kernel void kernel_mul_mv_iq1_bn_f32( kernel_mul_mv_iq1_bn_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); } +[[host_name("kernel_mul_mv_iq1_tn_f32")]] +kernel void kernel_mul_mv_iq1_tn_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq1_tn_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + [[host_name("kernel_mul_mv_iq2_bn_f32")]] kernel void kernel_mul_mv_iq2_bn_f32( device const void * src0, @@ -7080,6 +7209,38 @@ kernel void kernel_get_rows_q( } } +template<typename Dequantizer> +kernel void kernel_get_rows_q2( + device const void * src0, + device const void * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + Dequantizer deq((const device char *) src0 + r*nb01 + i02*nb02); + + for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) { + float4x4 temp; + deq.convert(ind, temp); + *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp; + } +} + template<typename T> kernel void kernel_get_rows_f( device const void * src0, @@ -7149,8 +7310,48 @@ kernel void kernel_get_rows_i32( #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8 #define SG_MAT_ROW 8 +template <typename T4x4, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)> +struct DefaultDequantizer { + using type4x4 = T4x4; + using Block = block_q; + DefaultDequantizer(device const char * cx, short il) : x((device const block_q *)cx + il/nl), il(il) {} + inline void convert(thread T4x4& t) const { dequantize_func(x, il, t); } + inline void next() { + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + } + device const block_q * x; + short il; +}; + +template <typename T4x4> +struct DequantizerIQ1TN { + using type4x4 = T4x4; + using Block = block_iq1_bn;; + DequantizerIQ1TN(device const char * cx, short il = 0) : il(il) { + d = *(device const half *)cx; + x = (device const Block *)(cx + sizeof(half)); + } + inline void convert(thread T4x4& t) const { + dequantize_iq1_bn(x, il, t); + t *= d; + } + inline void convert(int64_t ind, thread T4x4& t) { + dequantize_iq1_bn(x + ind/4, ind%4, t); + t *= d; + } + inline void next() { + constexpr int short nl = 4; + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + } + device const Block * x; + short il; + half d; +}; + // each block_q contains 16*nl weights -template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)> +template<typename T, typename simdgroup_T8x8, typename Dequantizer> kernel void kernel_mul_mm(device const uchar * src0, device const uchar * src1, device float * dst, @@ -7199,18 +7400,19 @@ kernel void kernel_mul_mm(device const uchar * src0, const uint i13 = im/ne12; uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02); - ushort offset1 = il/nl; - device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; - device const float * y = (device const float *)(src1 + device const char * cx = (device const char *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0); + device const float * y = (device const float *)(src1 + nb12 * im + nb11 * (r1 * BLOCK_SIZE_N + thread_col) + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + Dequantizer deq(cx, il); + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { // load data and store to threadgroup memory - T4x4 temp_a; - dequantize_func(x, il, temp_a); + typename Dequantizer::type4x4 temp_a; + deq.convert(temp_a); threadgroup_barrier(mem_flags::mem_threadgroup); #pragma unroll(16) @@ -7222,8 +7424,7 @@ kernel void kernel_mul_mm(device const uchar * src0, *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); - il = (il + 2 < nl) ? il + 2 : il % 2; - x = (il < 2) ? x + (2+nl-1)/nl : x; + deq.next(); y += BLOCK_SIZE_K; threadgroup_barrier(mem_flags::mem_threadgroup); @@ -7283,7 +7484,7 @@ kernel void kernel_mul_mm(device const uchar * src0, } // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids -template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> +template<typename Dequantizer> void kernel_mul_mm_id_impl( device const uchar * src0, device const uchar * src1, @@ -7330,20 +7531,20 @@ void kernel_mul_mm_id_impl( } short il = (tiitg % THREAD_PER_ROW); - ushort offset1 = il/nl; - threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col]; - device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1; - device const float * y = (device const float *)(src1 + device const char * cx = (device const char *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01); + device const float * y = (device const float *)(src1 + nb12 * id[1] + nb11 * (id[0] % ne11) + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + Dequantizer deq(cx, il); + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { // load data and store to threadgroup memory half4x4 temp_a; - dequantize_func(x, il, temp_a); + deq.convert(temp_a); threadgroup_barrier(mem_flags::mem_threadgroup); for (int i = 0; i < 16; i++) { @@ -7354,8 +7555,7 @@ void kernel_mul_mm_id_impl( *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); - il = (il + 2 < nl) ? il + 2 : il % 2; - x = (il < 2) ? x + (2+nl-1)/nl : x; + deq.next(); y += BLOCK_SIZE_K; threadgroup_barrier(mem_flags::mem_threadgroup); @@ -7405,7 +7605,7 @@ void kernel_mul_mm_id_impl( } } -template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> +template<typename Dequantizer> kernel void kernel_mul_mm_id( device const uchar * src0s, device const uchar * src1, @@ -7456,7 +7656,7 @@ kernel void kernel_mul_mm_id( threadgroup_barrier(mem_flags::mem_threadgroup); - kernel_mul_mm_id_impl<block_q, nl, dequantize_func>( + kernel_mul_mm_id_impl<Dequantizer>( src0, src1, rowids, @@ -7519,78 +7719,84 @@ template [[host_name("kernel_get_rows_iq5_k")]] kernel get_rows_q_t kernel_get template [[host_name("kernel_get_rows_iq6_k")]] kernel get_rows_q_t kernel_get_rows_q<block_iq6_k, QK_NL, dequantize_iq6_k>; template [[host_name("kernel_get_rows_iq1_bn")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_bn, 4, dequantize_iq1_bn>; template [[host_name("kernel_get_rows_iq2_bn")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_bn, 4, dequantize_iq2_bn>; +template [[host_name("kernel_get_rows_iq1_tn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerIQ1TN<float4x4>>; // // matrix-matrix multiplication // -typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mat_mm_t; - -template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>; -template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>; -template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>; -template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>; -template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>; -template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>; -template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>; -template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>; -template [[host_name("kernel_mul_mm_iq2_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_tn, QK_NL, dequantize_iq2_tn>; -template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>; -template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>; -template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>; -template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>; -template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>; -template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>; -template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>; -template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>; -template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>; -template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>; -template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>; -template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>; -template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>; -template [[host_name("kernel_mul_mm_iq2_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_k, QK_NL, dequantize_iq2_k>; -template [[host_name("kernel_mul_mm_iq3_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_k, QK_NL, dequantize_iq3_k>; -template [[host_name("kernel_mul_mm_iq4_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_k, QK_NL, dequantize_iq4_k>; -template [[host_name("kernel_mul_mm_iq5_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq5_k, QK_NL, dequantize_iq5_k>; -template [[host_name("kernel_mul_mm_iq6_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq6_k, QK_NL, dequantize_iq6_k>; -template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_bn, 4, dequantize_iq1_bn>; -template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_bn, 4, dequantize_iq2_bn>; +template <typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> +using DD = DefaultDequantizer<half4x4, block_q, nl, dequantize_func>; + +typedef decltype(kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>>) mat_mm_t; + +template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>>; +template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_f16>>; +template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_0, 2, dequantize_q4_0>>; +template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_1, 2, dequantize_q4_1>>; +template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_0, 2, dequantize_q5_0>>; +template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_1, 2, dequantize_q5_1>>; +template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q8_0, 2, dequantize_q8_0>>; +template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q2_K, QK_NL, dequantize_q2_K>>; +template [[host_name("kernel_mul_mm_iq2_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_tn, QK_NL, dequantize_iq2_tn>>; +template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q3_K, QK_NL, dequantize_q3_K>>; +template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_K, QK_NL, dequantize_q4_K>>; +template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_K, QK_NL, dequantize_q5_K>>; +template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_K, QK_NL, dequantize_q6_K>>; +template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>>; +template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xs, QK_NL, dequantize_iq2_xs>>; +template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>>; +template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_s, QK_NL, dequantize_iq3_s>>; +template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_s, QK_NL, dequantize_iq2_s>>; +template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_s, QK_NL, dequantize_iq1_s>>; +template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_m, QK_NL, dequantize_iq1_m>>; +template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_nl, 2, dequantize_iq4_nl>>; +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_xs, QK_NL, dequantize_iq4_xs>>; +template [[host_name("kernel_mul_mm_iq2_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_k, QK_NL, dequantize_iq2_k>>; +template [[host_name("kernel_mul_mm_iq3_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_k, QK_NL, dequantize_iq3_k>>; +template [[host_name("kernel_mul_mm_iq4_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_k, QK_NL, dequantize_iq4_k>>; +template [[host_name("kernel_mul_mm_iq5_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq5_k, QK_NL, dequantize_iq5_k>>; +template [[host_name("kernel_mul_mm_iq6_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq6_k, QK_NL, dequantize_iq6_k>>; +template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_bn, 4, dequantize_iq1_bn>>; +template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_bn, 4, dequantize_iq2_bn>>; +template [[host_name("kernel_mul_mm_iq1_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerIQ1TN<half4x4>>; // // indirect matrix-matrix multiplication // -typedef decltype(kernel_mul_mm_id<float4x4, 1, dequantize_f32>) mat_mm_id_t; - -template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>; -template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>; -template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>; -template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>; -template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>; -template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>; -template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>; -template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>; -template [[host_name("kernel_mul_mm_id_iq2_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_tn, QK_NL, dequantize_iq2_tn>; -template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>; -template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>; -template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>; -template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>; -template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>; -template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>; -template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>; -template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>; -template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>; -template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>; -template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>; -template [[host_name("kernel_mul_mm_id_iq1_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_bn, 4, dequantize_iq1_bn>; -template [[host_name("kernel_mul_mm_id_iq2_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_bn, 4, dequantize_iq2_bn>; -template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>; -template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>; -template [[host_name("kernel_mul_mm_id_iq2_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_k, QK_NL, dequantize_iq2_k>; -template [[host_name("kernel_mul_mm_id_iq3_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_k, QK_NL, dequantize_iq3_k>; -template [[host_name("kernel_mul_mm_id_iq4_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_k, QK_NL, dequantize_iq4_k>; -template [[host_name("kernel_mul_mm_id_iq5_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq5_k, QK_NL, dequantize_iq5_k>; -template [[host_name("kernel_mul_mm_id_iq6_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq6_k, QK_NL, dequantize_iq6_k>; +typedef decltype(kernel_mul_mm_id<DD<float4x4, 1, dequantize_f32>>) mat_mm_id_t; + +template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<float4x4, 1, dequantize_f32>>; +template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<half4x4, 1, dequantize_f16>>; +template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q4_0, 2, dequantize_q4_0>>; +template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q4_1, 2, dequantize_q4_1>>; +template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q5_0, 2, dequantize_q5_0>>; +template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q5_1, 2, dequantize_q5_1>>; +template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q8_0, 2, dequantize_q8_0>>; +template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q2_K, QK_NL, dequantize_q2_K>>; +template [[host_name("kernel_mul_mm_id_iq2_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_tn, QK_NL, dequantize_iq2_tn>>; +template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q3_K, QK_NL, dequantize_q3_K>>; +template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q4_K, QK_NL, dequantize_q4_K>>; +template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q5_K, QK_NL, dequantize_q5_K>>; +template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_q6_K, QK_NL, dequantize_q6_K>>; +template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>>; +template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_xs, QK_NL, dequantize_iq2_xs>>; +template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>>; +template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq3_s, QK_NL, dequantize_iq3_s>>; +template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_s, QK_NL, dequantize_iq2_s>>; +template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq1_s, QK_NL, dequantize_iq1_s>>; +template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq1_m, QK_NL, dequantize_iq1_m>>; +template [[host_name("kernel_mul_mm_id_iq1_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq1_bn, 4, dequantize_iq1_bn>>; +template [[host_name("kernel_mul_mm_id_iq2_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_bn, 4, dequantize_iq2_bn>>; +template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq4_nl, 2, dequantize_iq4_nl>>; +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq4_xs, QK_NL, dequantize_iq4_xs>>; +template [[host_name("kernel_mul_mm_id_iq2_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq2_k, QK_NL, dequantize_iq2_k>>; +template [[host_name("kernel_mul_mm_id_iq3_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq3_k, QK_NL, dequantize_iq3_k>>; +template [[host_name("kernel_mul_mm_id_iq4_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq4_k, QK_NL, dequantize_iq4_k>>; +template [[host_name("kernel_mul_mm_id_iq5_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq5_k, QK_NL, dequantize_iq5_k>>; +template [[host_name("kernel_mul_mm_id_iq6_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq6_k, QK_NL, dequantize_iq6_k>>; +template [[host_name("kernel_mul_mm_id_iq1_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerIQ1TN<half4x4>>; // // matrix-vector multiplication @@ -7795,6 +8001,7 @@ template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_s_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_m_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq1_bn_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_bn_f32_impl>>; +template [[host_name("kernel_mul_mv_id_iq1_tn_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_tn_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_bn_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_bn_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xxs_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xs_f32_impl>>; |