summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-05-10 18:52:54 +0300
committerGitHub <noreply@github.com>2025-05-10 18:52:54 +0300
commita2d24c97e5c5c28aeb3669dcc0044b69258a85ca (patch)
treefa9aa31fe57f0e3abbc0283a66b082535966d7ad
parent43a154d8b8b0e9217114577442cecb224a488d45 (diff)
TG improvements for MoE models (#404)
* cuda: Remove unnecessary device to host copy of row ids We get 3-4% TG speed improvement for DeepSeek-Lite just from that. * CPU: fix get_rows when SER is used With smart experts reduction (SER), one potentially uses fewer experts than specified by the model. This is accomplished by setting the ID of the not seected tensors to -1. Most of the necessary stuff was implemented when I added the SER option, but I forgot to update get_rows() for not quantized tensors. As a result, we get random garbage for the weights of the not-selected epxerts, which leads to garbage output. This commit fixes it on the CPU. I'm not quite sure yet why the GPU is not working. * CUDA: fix TG with SER --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r--ggml/src/ggml-cuda.cu5
-rw-r--r--ggml/src/ggml-cuda/mmvq.cu19
-rw-r--r--ggml/src/ggml.c35
3 files changed, 39 insertions, 20 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index ff6e064c..87f80d0c 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -2505,11 +2505,6 @@ static bool ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor
dst_padded_col_size, next->src[0]->type, stream);
CUDA_CHECK(cudaGetLastError());
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char * ids_dev = (const char *) ids->data;
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
-
local_dst.ne[2] = 1;
auto local_next = *next;
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
index f87ebb96..bc26cce4 100644
--- a/ggml/src/ggml-cuda/mmvq.cu
+++ b/ggml/src/ggml-cuda/mmvq.cu
@@ -147,10 +147,27 @@ static __global__ void mul_mat_vec_q(
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst,
const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, const int64_t ids_nb0) {
int i2 = blockIdx.y;
+ char * cdst = (char *)dst + i2*nb2;
int i02 = ids_data ? *(const int *)(ids_data + i2*ids_nb0) : i2;
+ if (i02 < 0) {
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+ constexpr int rows_per_cuda_block = 1;
+#else
+ constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+ const int row0 = rows_per_cuda_block*blockIdx.x;
+ if (threadIdx.y == 0) {
+ dst = (float *)cdst;
+ for (int j = 0; j < ncols_y; ++j) {
+ if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
+ dst[j*nrows_dst + row0 + threadIdx.x] = 0;
+ }
+ }
+ }
+ return;
+ }
const char * cx = (const char *)vx + i02*nb02;
const char * cy = (const char *)vy + i2*nb12;
- char * cdst = (char *)dst + i2*nb2;
mul_mat_vec_q<type, ncols_y, nwarps>(cx, cy, (float *)cdst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 4cd18a28..d82466e0 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -15911,11 +15911,14 @@ static void ggml_compute_forward_get_rows_f16(
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- assert(i01 >= 0 && i01 < ne01);
+ if (i01 >= 0 && i01 < ne01) {
+ ggml_fp16_to_fp32_row(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ } else {
+ memset((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03, 0, nc*sizeof(float));
+ }
- ggml_fp16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
@@ -15952,11 +15955,13 @@ static void ggml_compute_forward_get_rows_bf16(
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- assert(i01 >= 0 && i01 < ne01);
-
- ggml_bf16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ if (i01 >= 0 && i01 < ne01) {
+ ggml_bf16_to_fp32_row(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ } else {
+ memset((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03, 0, nc*sizeof(float));
+ }
}
}
@@ -15993,11 +15998,13 @@ static void ggml_compute_forward_get_rows_f32(
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- assert(i01 >= 0 && i01 < ne01);
-
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
+ if (i01 >= 0 && i01 < ne01) {
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
+ } else {
+ memset((char *)dst->data + i10*nb1 + i11*nb2 + i12*nb3, 0, nc*sizeof(float));
+ }
}
}