summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIwan Kawrakow <iwan.kawrakow@gmail.com>2024-08-07 16:49:43 +0300
committerKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-09 16:00:31 +0200
commita9b3f4a54b544a6e9adde65673533e0154d7767a (patch)
tree05390b1a8e92435de096215aa207ccd49e220b7a
parentcfb0410067be051dd8ea76c08280a3b04d5a5188 (diff)
iq6_k: WIP (quantize/dequantize)
-rw-r--r--examples/quantize/quantize.cpp1
-rw-r--r--ggml/src/ggml-quants.c1
-rw-r--r--ggml/src/iqk/iqk_quantize.cpp255
-rw-r--r--include/llama.h3
-rw-r--r--src/llama.cpp9
5 files changed, 150 insertions, 119 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp
index 5c311e3b..10c0299b 100644
--- a/examples/quantize/quantize.cpp
+++ b/examples/quantize/quantize.cpp
@@ -45,6 +45,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "IQ3_K", LLAMA_FTYPE_MOSTLY_IQ3_K, " 3.44 bpw non-linear quantization", },
{ "IQ4_K", LLAMA_FTYPE_MOSTLY_IQ4_K, " 4.5 bpw non-linear quantization", },
{ "IQ5_K", LLAMA_FTYPE_MOSTLY_IQ5_K, " 5.5 bpw non-linear quantization", },
+ { "IQ6_K", LLAMA_FTYPE_MOSTLY_IQ6_K, " 6.6 bpw non-linear quantization", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index 9b3fddbc..99bd682f 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -14996,6 +14996,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
case GGML_TYPE_IQ3_K: break;
case GGML_TYPE_IQ4_K: break;
case GGML_TYPE_IQ5_K: break;
+ case GGML_TYPE_IQ6_K: break;
case GGML_TYPE_IQ2_TN: break;
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp
index f12367a4..9d43506c 100644
--- a/ggml/src/iqk/iqk_quantize.cpp
+++ b/ggml/src/iqk/iqk_quantize.cpp
@@ -1518,6 +1518,11 @@ size_t quantize_iq5_k(const float * src, void * dst, int64_t nrows, int64_t n_pe
//
// ============================================== iq6_K
//
+#define A_IQ6K -127.f
+#define B_IQ6K 6.2568f
+#define C_IQ6K 0.11218f
+#define D_IQ6K 0.0011972f
+
void dequantize_row_iq6_k(const block_iq6_k * x, float * y, int64_t k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
@@ -1538,15 +1543,19 @@ void dequantize_row_iq6_k(const block_iq6_k * x, float * y, int64_t k) {
float dl2 = d * sl[4*ib64 + 1];
float dl3 = d * sl[4*ib64 + 2];
float dl4 = d * sl[4*ib64 + 3];
- int m1 = extra & 1 ? -127 : -125;
- int m2 = extra & 2 ? -127 : -125;
- int m3 = extra & 4 ? -127 : -125;
- int m4 = extra & 8 ? -127 : -125;
+ float m1 = extra & 1 ? 1 : 0;
+ float m2 = extra & 2 ? 1 : 0;
+ float m3 = extra & 4 ? 1 : 0;
+ float m4 = extra & 8 ? 1 : 0;
for (int j = 0; j < 16; ++j) {
- y[j+ 0] = dl1 * ((((qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 0x03) << 4)) << 2) + m1);
- y[j+16] = dl2 * ((((qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 0x03) << 4)) << 2) + m2);
- y[j+32] = dl3 * ((((qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 0x0c) << 2)) << 2) + m3);
- y[j+48] = dl4 * ((((qs[j+16] >> 4) | (((qh[j+16] >> shift) & 0x0c) << 2)) << 2) + m4);
+ float q1 = ((qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 0x03) << 4));
+ float q2 = ((qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 0x03) << 4));
+ float q3 = ((qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 0x0c) << 2));
+ float q4 = ((qs[j+16] >> 4) | (((qh[j+16] >> shift) & 0x0c) << 2));
+ y[j+ 0] = dl1 * (A_IQ6K + q1*(B_IQ6K + q1*(-C_IQ6K + q1*D_IQ6K)) + m1);
+ y[j+16] = dl2 * (A_IQ6K + q2*(B_IQ6K + q2*(-C_IQ6K + q2*D_IQ6K)) + m2);
+ y[j+32] = dl3 * (A_IQ6K + q3*(B_IQ6K + q3*(-C_IQ6K + q3*D_IQ6K)) + m3);
+ y[j+48] = dl4 * (A_IQ6K + q4*(B_IQ6K + q4*(-C_IQ6K + q4*D_IQ6K)) + m4);
}
y += 64;
qs += 32;
@@ -1624,7 +1633,39 @@ void vec_dot_iq6_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx,
namespace {
-void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) {
+inline int best_index(int n, const float * val, float x) {
+ if (x <= val[0]) return 0;
+ if (x >= val[n-1]) return n-1;
+ int ml = 0, mu = n-1;
+ while (mu-ml > 1) {
+ int mav = (ml+mu)/2;
+ if (x < val[mav]) mu = mav; else ml = mav;
+ }
+ return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
+}
+uint8_t iq6nl_index[249] = {
+ 0, 0, 0, 64, 1, 1, 1, 1, 1, 65, 2, 2, 2, 2, 2, 66, 3, 3, 3, 3, 67, 67, 4, 4, 4, 4, 68, 5, 5, 5, 5, 69,
+ 69, 6, 6, 6, 70, 70, 7, 7, 7, 71, 8, 8, 8, 72, 72, 9, 9, 9, 73, 73, 10, 10, 10, 74, 11, 11, 11, 75, 12, 12, 12, 76,
+ 13, 13, 13, 77, 14, 14, 14, 78, 15, 15, 79, 79, 16, 16, 80, 17, 17, 81, 81, 18, 18, 82, 19, 19, 83, 83, 20, 84, 84, 21, 85, 85,
+ 22, 86, 86, 23, 87, 87, 24, 88, 88, 25, 89, 89, 26, 90, 90, 27, 91, 91, 28, 92, 29, 93, 93, 30, 94, 94, 31, 95, 95, 32, 96, 33,
+ 97, 97, 34, 98, 98, 35, 99, 99, 36, 100, 100, 37, 101, 38, 102, 102, 39, 103, 103, 40, 104, 104, 41, 41, 105, 42, 42, 106, 106, 43, 107, 107,
+ 44, 108, 108, 45, 45, 109, 46, 46, 46, 110, 47, 47, 111, 111, 48, 48, 112, 49, 49, 49, 113, 50, 50, 50, 114, 51, 51, 51, 115, 52, 52, 52,
+ 116, 116, 53, 53, 53, 117, 54, 54, 54, 118, 118, 55, 55, 55, 119, 119, 56, 56, 56, 120, 120, 57, 57, 57, 121, 121, 58, 58, 58, 58, 122, 59,
+ 59, 59, 59, 123, 123, 60, 60, 60, 60, 124, 61, 61, 61, 61, 61, 125, 62, 62, 62, 62, 62, 126, 63, 63, 63,
+};
+inline int best_index_iq6nl(const float * values, float x) {
+ int ix = (int)(x - values[0]);
+ if (ix < 0 || ix >= 249) return ix < 0 ? 0 : 63;
+ ix = iq6nl_index[ix];
+ return ix < 64 ? ix : x - values[ix-64] < values[ix-63] - x ? ix-64 : ix-63;
+ //if (x <= val[0]) return 0;
+ //if (x >= val[63]) return 63;
+ //int index = iq6nl_index[int(x - val[0])];
+ //return index < 64 ? index : x - val[index-64] < val[index-63] - x ? index - 64 : index - 63;
+}
+
+
+void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights, const float * values, const float * shifted_values) {
const int ntry = 5;
const float step = 1.f;
@@ -1633,10 +1674,6 @@ void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const fl
float scales[QK_K/16];
float weight[16];
- uint8_t L[QK_K];
-
- //int nerr = 0;
-
for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) {
memset(&y[ibl], 0, sizeof(block_iq6_k));
@@ -1647,7 +1684,7 @@ void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const fl
for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j];
const float sigma2 = 2*sumx2/QK_K;
- float max_abs_scale = 0;
+ float max_scale = 0, max_abs_scale = 0;
uint16_t extra = 0;
for (int ib = 0; ib < QK_K/16; ++ib) {
@@ -1656,56 +1693,58 @@ void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const fl
const float * qw = quant_weights + ibl*QK_K + ib*16;
for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
} else {
- for (int j = 0; j < 16; ++j) weight[j] = 1.f; //0.25f*sigma2 + xb[j]*xb[j];
+ for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j];
}
- float amax = 0;
+ float amax = 0, max = 0;
for (int j = 0; j < 16; ++j) {
float ax = fabsf(xb[j]);
- amax = std::max(ax, amax);
+ if (ax > amax) {
+ amax = ax; max = xb[j];
+ }
}
if (!amax) {
scales[ib] = 0;
continue;
}
- float d = amax/127;
- float id = 0.25f/d;
+ float d = ntry > 0 ? -max/values[0] : max/values[0];
+ float id = 1/d;
float sumqx_p = 0, sumq2_p = 0;
float sumqx_m = 0, sumq2_m = 0;
for (int j = 0; j < 16; ++j) {
float w = weight[j];
- int lp = nearest_int(id*xb[j] + 31.25f);
- lp = std::max(0, std::min(63, lp));
- float qp = 4*lp - 125;
- sumqx_p += w*qp*xb[j];
- sumq2_p += w*qp*qp;
- int lm = nearest_int(id*xb[j] + 31.75f);
- lm = std::max(0, std::min(63, lm));
- float qm = 4*lm - 127;
- sumqx_m += w*qm*xb[j];
- sumq2_m += w*qm*qm;
- //printf("x = %g, lp = %d, qp = %g -> %g, lm = %d, qm = %g -> %g\n", xb[j], lp, qp, d*qp, lm, qm, d*qm);
+ float al = id*xb[j];
+ //int l = best_index(64, values, al);
+ int l = best_index_iq6nl(values, al);
+ float q = values[l];
+ sumqx_p += w*q*xb[j];
+ sumq2_p += w*q*q;
+ //l = best_index(64, values, -al);
+ l = best_index_iq6nl(values, -al);
+ q = values[l];
+ sumqx_m += w*q*xb[j];
+ sumq2_m += w*q*q;
}
d = sumqx_p/sumq2_p;
float best = d*sumqx_p;
- bool is_shifted = false;
if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
- d = sumqx_m/sumq2_m; best = d*sumqx_m; is_shifted = true;
+ d = sumqx_m/sumq2_m; best = d*sumqx_m;
}
+ bool is_shifted = false;
for (int itry = -ntry; itry <= ntry; ++itry) {
- //0.25/amax*127 => 31.75/amax
- id = (itry*step + 31.75f)/amax;
+ id = (itry*step + values[0])/max;
sumqx_p = sumq2_p = 0;
sumqx_m = sumq2_m = 0;
for (int j = 0; j < 16; ++j) {
float w = weight[j];
- int l = nearest_int(id*xb[j] + 31.25f);
- l = std::max(0, std::min(63, l));
- float q = 4*l - 125;
+ float al = id*xb[j];
+ //int l = best_index(64, values, al);
+ int l = best_index_iq6nl(values, al);
+ float q = values[l];
sumqx_p += w*q*xb[j];
sumq2_p += w*q*q;
- l = nearest_int(id*xb[j] + 31.75f);
- l = std::max(0, std::min(63, l));
- q = 4*l - 127;
+ //l = best_index(64, values, -al);
+ l = best_index_iq6nl(values, -al);
+ q = values[l];
sumqx_m += w*q*xb[j];
sumq2_m += w*q*q;
}
@@ -1713,121 +1752,100 @@ void quantize_row_iq6_k_impl(const float * x, void * vy, int n_per_row, const fl
d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false;
}
if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
+ d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false;
+ }
+ id = (itry*step + shifted_values[0])/max;
+ sumqx_p = sumq2_p = 0;
+ sumqx_m = sumq2_m = 0;
+ for (int j = 0; j < 16; ++j) {
+ float w = weight[j];
+ float al = id*xb[j];
+ //int l = best_index(64, shifted_values, al);
+ int l = best_index_iq6nl(shifted_values, al);
+ float q = shifted_values[l];
+ sumqx_p += w*q*xb[j];
+ sumq2_p += w*q*q;
+ //l = best_index(64, shifted_values, -al);
+ l = best_index_iq6nl(shifted_values, -al);
+ q = shifted_values[l];
+ sumqx_m += w*q*xb[j];
+ sumq2_m += w*q*q;
+ }
+ if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) {
+ d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true;
+ }
+ if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) {
d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true;
}
}
+ if (d) {
+ const float * block_values = is_shifted ? shifted_values : values;
+ float sumqx = 0, sumq2 = 0;
+ id = 1/d;
+ for (int j = 0; j < 16; ++j) {
+ float w = weight[j];
+ float al = id*xb[j];
+ //int l = best_index(64, block_values, al);
+ int l = best_index_iq6nl(block_values, al);
+ float q = block_values[l];
+ sumqx += w*q*xb[j];
+ sumq2 += w*q*q;
+ }
+ if (sumq2 > 0) d = sumqx/sumq2;
+ }
scales[ib] = d;
if (is_shifted) extra |= (1 << ib);
- max_abs_scale = std::max(max_abs_scale, amax);
-
- //float mse = 0;
- //id = 0.25f/d;
- //float xmin = is_shifted ? 31.75f : 31.25f;
- //for (int j = 0; j < 16; ++j) {
- // int l = nearest_int(id*xb[j] + xmin);
- // l = std::max(0, std::min(63, l));
- // float diff = xb[j] - 4*d*(l - xmin);
- // mse += diff*diff;
- //}
- //printf("Block %d: %g\n", ib, sqrtf(mse/16));
+ float abs_scale = fabsf(scales[ib]);
+ if (abs_scale > max_abs_scale) {
+ max_abs_scale = abs_scale; max_scale = scales[ib];
+ }
}
if (!max_abs_scale) continue;
- float d = max_abs_scale/255;
+ float d = -max_scale/127;
y[ibl].d = GGML_FP32_TO_FP16(d);
y[ibl].extra = extra;
float id = 1/d;
- std::memset(L, 0, QK_K);
float sumqx = 0, sumq2 = 0;
- //float tot_mse = 0;
for (int ib = 0; ib < QK_K/16; ++ib) {
int ls = nearest_int(id*scales[ib]);
- ls = MAX(0, MIN(255, ls));
- y[ibl].scales[ib] = ls;
+ ls = MAX(-127, MIN(127, ls));
+ y[ibl].scales[ib] |= ls;
float dl = d * ls;
if (dl) {
- const float xmin = y[ibl].extra & (1 << ib) ? 31.75f : 31.25f;
+ const float * block_values = y[ibl].extra & (1 << ib) ? shifted_values : values;
const float * xb = xbl + 16*ib;
if (quant_weights) {
const float * qw = quant_weights + ibl*QK_K + ib*16;
for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
} else {
- for (int j = 0; j < 16; ++j) weight[j] = 1.f; //0.25f*sigma2 + xb[j]*xb[j];
+ for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j];
}
- float idl = 0.25f/dl;
+ float idl = 1/dl;
int ib32 = ib/2;
int offset = 16*(ib%2);
uint8_t * qs = y[ibl].qs + 32*(ib32/2) + offset;
uint8_t * qh = y[ibl].qh + 32*(ib32/4) + offset;
- //float mse1 = 0, mse2 = 0;
for (int j = 0; j < 16; ++j) {
- int l = nearest_int(idl*xb[j] + xmin);
- l = std::max(0, std::min(63, l));
- L[16*ib + j] = l;
- qs[j] |= ((l & 0xf) << 4*(ib32%2));
- qh[j] |= ((l >> 4) << 2*(ib32%4));
+ const float al = idl*xb[j];
+ //int ibest = best_index(64, block_values, al);
+ int ibest = best_index_iq6nl(block_values, al);
+ qs[j] |= ((ibest & 0xf) << 4*(ib32%2));
+ qh[j] |= ((ibest >> 4) << 2*(ib32%4));
float w = weight[j];
- float q = 4*(l - xmin)*ls;
+ float q = block_values[ibest]*ls;
sumqx += w*q*xb[j];
sumq2 += w*q*q;
- //float diff = xb[j] - 4*d*ls*(l - xmin);
- //mse1 += diff*diff;
- int ll = ((qs[j] >> 4*(ib32%2)) & 0xf) | (((qh[j] >> 2*(ib32%4)) << 4) & 0x30);
- if (ll != l) {
- printf("Oops: l = %d, ll = %d, qs = %u, qh = %u, ib = %d\n", l, ll, qs[j], qh[j], ib);
- exit(1);
- }
- //diff = xb[j] - 4*d*ls*(ll - xmin);
- //mse2 += diff*diff;
}
- //printf("Block %d: %g, %g\n", ib, sqrtf(mse1/16), sqrtf(mse2/16));
- //tot_mse += mse1;
}
}
- //printf("=============== rmse = %g, Old scale: %g New scale: %g\n", sqrtf(tot_mse/256), d, sumqx/sumq2);
if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2);
- //d = GGML_FP16_TO_FP32(y[ibl].d);
- //tot_mse = 0;
- //for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
- // const float * xb = xbl + 32*ib32;
- // float dl1 = d * y[ibl].scales[2*ib32+0];
- // float dl2 = d * y[ibl].scales[2*ib32+1];
- // int min1 = y[ibl].extra & (1 << (2*ib32+0)) ? -127 : -125;
- // int min2 = y[ibl].extra & (1 << (2*ib32+1)) ? -127 : -125;
- // const uint8_t * qs = y[ibl].qs + 32*(ib32/2);
- // const uint8_t * qh = y[ibl].qh + 32*(ib32/4);
- // for (int j = 0; j < 16; ++j) {
- // int l = ((qs[j] >> 4*(ib32%2)) & 0xf) | (((qh[j] >> 2*(ib32%4)) << 4) & 0x30);
- // if (l != L[32*ib32 + j]) {
- // ++nerr;
- // printf("Oops: %d vs %u for ib32 = %d, j = %d. qs = %u (0x%02x), qh = %u (0x%02x)\n", l, L[32*ib32 + j], ib32, j, qs[j], qs[j], qh[j], qh[j]);
- // if (nerr > 10) exit(1);
- // }
- // float diff = dl1*(4*l + min1) - xb[j];
- // tot_mse += diff*diff;
- // //printf(" %d %d %g\n", l, 4*l + min1, diff);
- // }
- // for (int j = 16; j < 32; ++j) {
- // int l = ((qs[j] >> 4*(ib32%2)) & 0xf) | (((qh[j] >> 2*(ib32%4)) << 4) & 0x30);
- // if (l != L[32*ib32 + j]) {
- // ++nerr;
- // printf("Oops: %d vs %u for ib32 = %d, j = %d. qs = %u (0x%02x), qh = %u (0x%02x)\n", l, L[32*ib32 + j], ib32, j, qs[j], qs[j], qh[j], qh[j]);
- // if (nerr > 10) exit(1);
- // }
- // float diff = dl2*(4*l + min2) - xb[j];
- // tot_mse += diff*diff;
- // //printf(" %d %d %g\n", l, 4*l + min2, diff);
- // }
- //}
- //printf(" after adjusting scale: d = %g, rmse = %g\n", d, sqrtf(tot_mse/256));
-
}
-
}
}
@@ -1847,8 +1865,13 @@ size_t quantize_iq6_k(const float * src, void * dst, int64_t nrows, int64_t n_pe
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
char * qrow = (char *)dst;
+ float values[128];
+ for (int i = 0; i < 64; ++i) {
+ values[i] = A_IQ6K + B_IQ6K*i - C_IQ6K*i*i + D_IQ6K*i*i*i;
+ values[i+64] = values[i] + 1.f;
+ }
for (int64_t row = 0; row < nrows; ++row) {
- quantize_row_iq6_k_impl(src, (void *)qrow, n_per_row, imatrix);
+ quantize_row_iq6_k_impl(src, (void *)qrow, n_per_row, imatrix, values, values + 64);
src += n_per_row;
qrow += nblock*sizeof(block_iq6_k);
}
diff --git a/include/llama.h b/include/llama.h
index a5a2deb1..9ae88060 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -174,7 +174,8 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_IQ3_K = 39, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_K = 40, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ5_K = 41, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ2_TN = 42, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ6_K = 42, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ2_TN = 43, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
diff --git a/src/llama.cpp b/src/llama.cpp
index 7a28314e..71be05f9 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3766,6 +3766,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ3_K: ftype = LLAMA_FTYPE_MOSTLY_IQ3_K; break;
case GGML_TYPE_IQ4_K: ftype = LLAMA_FTYPE_MOSTLY_IQ4_K; break;
case GGML_TYPE_IQ5_K: ftype = LLAMA_FTYPE_MOSTLY_IQ5_K; break;
+ case GGML_TYPE_IQ6_K: ftype = LLAMA_FTYPE_MOSTLY_IQ6_K; break;
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
@@ -4465,6 +4466,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ3_K: return "IQ3_K - 3.4325 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_K: return "IQ4_K - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ5_K: return "IQ5_K - 5.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ6_K: return "IQ6_K - 6.6 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
@@ -15418,7 +15420,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K) {
new_type = GGML_TYPE_Q5_K;
}
- else if (new_type != GGML_TYPE_Q8_0) {
+ else if (new_type != GGML_TYPE_Q8_0 && new_type != GGML_TYPE_IQ6_K) {
new_type = GGML_TYPE_Q6_K;
}
}
@@ -15645,7 +15647,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
new_type == GGML_TYPE_IQ1_M || new_type == GGML_TYPE_IQ4_K || new_type == GGML_TYPE_IQ2_K ||
- new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K || new_type == GGML_TYPE_IQ2_TN) {
+ new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K || new_type == GGML_TYPE_IQ2_TN ||
+ new_type == GGML_TYPE_IQ6_K) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -15680,6 +15683,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_IQ5_K:
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
+ case GGML_TYPE_IQ6_K:
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
@@ -15786,6 +15790,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ3_K: default_type = GGML_TYPE_IQ3_K; break;
case LLAMA_FTYPE_MOSTLY_IQ4_K: default_type = GGML_TYPE_IQ4_K; break;
case LLAMA_FTYPE_MOSTLY_IQ5_K: default_type = GGML_TYPE_IQ5_K; break;
+ case LLAMA_FTYPE_MOSTLY_IQ6_K: default_type = GGML_TYPE_IQ6_K; break;
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;