diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-10-01 10:56:50 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-10-01 10:56:50 +0300 |
commit | c2ff4f936a3060cb1ef6adc6e7c2664324c89d84 (patch) | |
tree | 621e9012f130f4a6d852f464b49bca9151ef372b | |
parent | 8cba4789da860d32cfc6d14f96ed37ade9e334bd (diff) |
iqk_mul_mat: better iq4_nl implementation on Zen4/AVX2 (#72)
* iqk_mul_mat: better iq4_nl implementation on Zen4/AVX2
PP-512 performance for LLaMA-3.1-8B goes to 162.6 t/s up
from 133.2 t/s.
* Fix AVX2
In addition to fixing iq4_nl, it seems I never adhusted the AVX2
implementation for iq2_tn to the block scale removal?
This commit also fixes that.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | ggml/src/ggml.c | 4 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 48 |
2 files changed, 22 insertions, 30 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 184a31a8..ee83fc43 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1049,7 +1049,11 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .from_float = quantize_row_iq4_nl, .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref, .vec_dot = ggml_vec_dot_iq4_nl_q8_0, +#if GGML_USE_IQK_MULMAT && defined __AVX2__ + .vec_dot_type = GGML_TYPE_Q8_1, +#else .vec_dot_type = GGML_TYPE_Q8_0, +#endif .nrows = 1, .row_meta_size = 0, }, diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index 568e577c..1183246b 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -542,6 +542,12 @@ struct SimpleBits { __m256i values[4]; }; +__m256i inline load_iq4nl_values_256() { + static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241}; + auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl); + return MM256_SET_M128I(val128, val128); +} + #ifdef HAVE_FANCY_SIMD //====================================== Zen4 ================================================== @@ -609,10 +615,8 @@ struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> { Scales8K s8k; }; -__m512i load_iq4nl_values_512() { - static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241}; - auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl); - auto val256 = MM256_SET_M128I(val128, val128); +__m512i inline load_iq4nl_values_512() { + auto val256 = load_iq4nl_values_256(); return _mm512_inserti32x8(_mm512_castsi256_si512(val256), val256, 1); } @@ -1418,14 +1422,8 @@ struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> { Scales8K s8k; }; -__m256i load_iq4nl_values() { - static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241}; - auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl); - return MM256_SET_M128I(val128, val128); -} - struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { - DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values()) {} + DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_256()) {} template <typename Q8> inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { d = GGML_FP16_TO_FP32(x[i].d); @@ -1563,7 +1561,7 @@ struct DequantizerIQ3K final : public BaseDequantizer<block_iq3_k> { }; struct DequantizerIQ4K final : public BaseDequantizer<block_iq4_k> { - DequantizerIQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx), iqxk(4, -128), values(load_iq4nl_values()) {} + DequantizerIQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx), iqxk(4, -128), values(load_iq4nl_values_256()) {} template <typename Q8> inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) { d = GGML_FP16_TO_FP32(x[i].d); @@ -1780,12 +1778,9 @@ struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> { const __m256i mh = _mm256_set1_epi8(0x30); }; -struct DequantizerIQ2TN final : public BaseDequantizer<block_iq2_tn> { +struct DequantizerIQ2TN final : public BaseDequantizer<block_iq2_tn, true> { DequantizerIQ2TN(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} - inline void new_block(int i) { - d = GGML_FP16_TO_FP32(x[i].d); - } inline void prepare(int i, int j) { bits.prepare(x[i].qs, j); } @@ -1812,8 +1807,6 @@ IQK_NOINLINE void mul_mat_iq2tn_q8_K(int n, const void * vx, size_t bx, const Da for (int i = 0; i < nb; ++i) { - deq1.new_block(i); - if constexpr (nrc_y == 1) { deq1.prepare(i, 0); auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq1.bits.values[0], q8.load_quants(0, i, 0)), @@ -3181,15 +3174,10 @@ struct Q4_0_1_Dequantizer { struct IQ4_NL_Dequantizer { Dequantizer4bit b4; - const __m256i values = load_values(); + const __m256i values = load_iq4nl_values_256(); inline __m256i dequant(const block_iq4_nl * x) const { return _mm256_shuffle_epi8(values, b4.dequant(x->qs)); } - static __m256i load_values() { - static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; - auto aux = _mm_loadu_si128((const __m128i *)iq4nl_values); - return MM256_SET_M128I(aux, aux); - } }; struct Q4_1_Dequantizer { @@ -3315,9 +3303,9 @@ struct Q4_0_1_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0_1<8> using Sum4T = Sum4TypeQ81; inline static int block_size() { return QK4_0; } }; -struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0, IQ4_NL_Dequantizer> { +struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0_1<128>, IQ4_NL_Dequantizer> { IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} - using Sum4T = Sum4TypeQ80; + using Sum4T = Sum4TypeQ81; inline static int block_size() { return QK4_NL; } }; struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> { @@ -3341,7 +3329,7 @@ struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_ inline static int block_size() { return QK4_1; } }; -// float matrices - we handle f16 and f32, but only to f32 result +// float matrices - we handle f16, bf16 (if native bf16 support is available) and f32, but only to f32 result struct QFBase { #ifdef __AVX512F__ @@ -3624,7 +3612,7 @@ void mul_mat_q80_q80_T(int n, const void * vx, size_t bx, const DataInfo& info, template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { if constexpr (std::is_same_v<Dequantizer, Q4_0_Unpacker> || std::is_same_v<Dequantizer, Q5_0_Unpacker> || - std::is_same_v<Dequantizer, Q8_0_Unpacker> || std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) { + std::is_same_v<Dequantizer, Q8_0_Unpacker>) { m.funcs[0] = mul_mat_qX_0_q8_0_T<Dequantizer, 1>; m.funcs[1] = mul_mat_qX_0_q8_0_T<Dequantizer, 2>; m.funcs[2] = mul_mat_qX_0_q8_0_T<Dequantizer, 3>; @@ -3636,7 +3624,7 @@ template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { } else if constexpr (std::is_same_v<Dequantizer, Q4_1_Unpacker> || std::is_same_v<Dequantizer, Q5_1_Unpacker> || std::is_same_v<Dequantizer, Q8_0_1_Unpacker> || std::is_same_v<Dequantizer, Q4_0_1_Unpacker> || - std::is_same_v<Dequantizer, Q5_0_1_Unpacker>) { + std::is_same_v<Dequantizer, Q5_0_1_Unpacker> || std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) { m.funcs[0] = mul_mat_qX_1_q8_1_T<Dequantizer, 1>; m.funcs[1] = mul_mat_qX_1_q8_1_T<Dequantizer, 2>; m.funcs[2] = mul_mat_qX_1_q8_1_T<Dequantizer, 3>; @@ -3933,7 +3921,7 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { case GGML_TYPE_IQ4_NL: assert (ne00 % QK4_NL == 0); MulMat::set_functions<IQ4_NL_Unpacker>(mm); - expected_typeB = GGML_TYPE_Q8_0; + expected_typeB = GGML_TYPE_Q8_1; break; default: |