summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-04-05 14:31:27 +0200
committerGitHub <noreply@github.com>2025-04-05 14:31:27 +0200
commitec84855c6ae5a08686f3e5d8010e38064269deb3 (patch)
treeedec3b14aa1168d616b4c0afae7b963ac49c7c0f
parentc616306a011cb93d6142285f85cb6803a1a02564 (diff)
We need to synchronize before using device to host async memcpy (#313)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r--ggml/src/ggml-cuda.cu10
1 files changed, 3 insertions, 7 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index 5f4731c8..0096a00b 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -2208,7 +2208,7 @@ static inline void prepare_row_mappigs(ggml_backend_cuda_context& ctx, int64_t n
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- //CUDA_CHECK(cudaStreamSynchronize(stream));
+ CUDA_CHECK(cudaStreamSynchronize(stream));
std::vector<mmid_row_mapping> rmapping(ids->ne[1]*n_ids);
moe_counts.resize(n_as, 0);
@@ -2239,6 +2239,7 @@ static inline void prepare_row_mappigs(ggml_backend_cuda_context& ctx, int64_t n
for (int i = 0; i < (int)n_as; ++i) cum_moe_counts[i] -= moe_counts[i];
CUDA_CHECK(cudaMemcpyAsync(dev_row_mapping.get(), rmapping.data(), cum_moe_counts[n_as]*sizeof(mmid_row_mapping), cudaMemcpyHostToDevice, stream));
+ CUDA_CHECK(cudaStreamSynchronize(stream));
}
@@ -2302,11 +2303,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];
- //std::vector<char> ids_host(ggml_nbytes(ids));
- //const char * ids_dev = (const char *) ids->data;
- //CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- //CUDA_CHECK(cudaStreamSynchronize(stream));
-
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
@@ -2335,12 +2331,12 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
+ CUDA_CHECK(cudaStreamSynchronize(stream));
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (i02 < 0 || i02 >= n_as) continue;
- //GGML_ASSERT(i02 >= 0 && i02 < n_as);
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;