summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGalunid <karolek1231456@gmail.com>2023-11-20 11:35:47 +0100
committerGitHub <noreply@github.com>2023-11-20 11:35:47 +0100
commitf23c0359a32871947169a044eb1dc4dbffd0f405 (patch)
treec427d8031c7d41e1ea23eaeaca956f09b94ee54f
parent40a34fe8d034bd484efd79ccbb95059ca6308dcb (diff)
ci : add flake8 to github actions (python linting) (#4129)
Disabled rules: * E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned * E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned * E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned * E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard * E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned * E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned * E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard * E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard * E266 Too many leading '#' for block comment - sometimes used as "section" separator * E501 Line too long - disabled because it's broken so often it seems like a standard * E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead) * E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)
-rw-r--r--.github/workflows/python-lint.yml20
-rwxr-xr-xconvert-hf-to-gguf.py3
-rwxr-xr-xconvert-llama-ggml-to-gguf.py53
-rw-r--r--convert-persimmon-to-gguf.py4
-rw-r--r--[-rwxr-xr-x]convert.py60
-rw-r--r--gguf-py/gguf/gguf_writer.py2
-rw-r--r--tests/test-tokenizer-0-falcon.py56
-rw-r--r--tests/test-tokenizer-0-llama.py52
8 files changed, 153 insertions, 97 deletions
diff --git a/.github/workflows/python-lint.yml b/.github/workflows/python-lint.yml
new file mode 100644
index 00000000..56d17b66
--- /dev/null
+++ b/.github/workflows/python-lint.yml
@@ -0,0 +1,20 @@
+name: flake8 Lint
+
+on: [push, pull_request]
+
+jobs:
+ flake8-lint:
+ runs-on: ubuntu-latest
+ name: Lint
+ steps:
+ - name: Check out source repository
+ uses: actions/checkout@v3
+ - name: Set up Python environment
+ uses: actions/setup-python@v4
+ with:
+ python-version: "3.11"
+ - name: flake8 Lint
+ uses: py-actions/flake8@v2
+ with:
+ ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
+ exclude: "examples/*,examples/*/**,*/**/__init__.py"
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index 3a618fd4..1105670c 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -827,13 +827,14 @@ class StableLMModel(Model):
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"]*(hparams["hidden_size"] // hparams["num_attention_heads"])))
+ self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)
###### CONVERSION LOGIC ######
+
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py
index 0c123567..e359330a 100755
--- a/convert-llama-ggml-to-gguf.py
+++ b/convert-llama-ggml-to-gguf.py
@@ -14,11 +14,13 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
+
class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2
+
class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
@@ -38,6 +40,7 @@ class GGMLFType(IntEnum):
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18
+
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
@@ -69,6 +72,7 @@ class Hyperparameters:
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
+
class Vocab:
def __init__(self, load_scores = True):
self.items = []
@@ -90,6 +94,7 @@ class Vocab:
self.items.append((item_text, item_score))
return offset - orig_offset
+
class Tensor:
def __init__(self, use_padding = True):
self.name = None
@@ -123,6 +128,7 @@ class Tensor:
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
+
class GGMLModel:
def __init__(self):
self.hyperparameters = None
@@ -159,8 +165,8 @@ class GGMLModel:
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
- if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
- GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
+ if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
+ GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
@@ -187,6 +193,7 @@ class GGMLModel:
hp.set_n_ff(self)
return offset
+
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
@@ -217,7 +224,7 @@ class GGMLToGGUF:
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
- use_temp_file = False )
+ use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
if self.special_vocab is not None:
@@ -341,7 +348,8 @@ class GGMLToGGUF:
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
- raw_dtype = tensor.dtype )
+ raw_dtype = tensor.dtype)
+
def handle_metadata(cfg, hp):
import convert
@@ -365,38 +373,40 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
- cfg.vocabtype )
+ cfg.vocabtype)
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
- load_merges = cfg.vocabtype == 'bpe',
- n_vocab = vocab.vocab_size)
+ load_merges = cfg.vocabtype == 'bpe',
+ n_vocab = vocab.vocab_size)
convert.check_vocab_size(params, vocab)
return (params, vocab, svocab)
+
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True,
- help = 'Input GGMLv3 filename')
+ help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True,
- help ='Output GGUF filename')
+ help ='Output GGUF filename')
parser.add_argument('--name',
- help = 'Set model name')
+ help = 'Set model name')
parser.add_argument('--desc',
- help = 'Set model description')
+ help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1,
- help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
+ help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
- help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
+ help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
- help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
+ help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
- help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
+ help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
- help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
+ help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
- help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
+ help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()
+
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
@@ -406,7 +416,7 @@ def main():
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
print('* Scanning GGML input file')
- offset = model.load(data, 0)
+ offset = model.load(data, 0) # noqa
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
@@ -421,12 +431,15 @@ def main():
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
- converter = GGMLToGGUF(model, data, cfg,
+ converter = GGMLToGGUF(
+ model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
- special_vocab = special_vocab )
+ special_vocab = special_vocab
+ )
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
+
if __name__ == '__main__':
main()
diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py
index 240f8730..206b7d5f 100644
--- a/convert-persimmon-to-gguf.py
+++ b/convert-persimmon-to-gguf.py
@@ -9,6 +9,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
+
def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
@@ -21,6 +22,7 @@ def _flatten_dict(dct, tensors, prefix=None):
raise ValueError(type(dct[key]))
return None
+
def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
@@ -54,6 +56,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
pass
return tokens, scores, toktypes
+
def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
@@ -125,6 +128,5 @@ def main():
print("")
-
if __name__ == '__main__':
main()
diff --git a/convert.py b/convert.py
index 5b6344aa..3ad836ce 100755..100644
--- a/convert.py
+++ b/convert.py
@@ -46,6 +46,7 @@ DEFAULT_CONCURRENCY = 8
# data types
#
+
@dataclass(frozen=True)
class DataType:
name: str
@@ -55,15 +56,18 @@ class DataType:
def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize
+
@dataclass(frozen=True)
class UnquantizedDataType(DataType):
pass
+
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
+
@dataclass(frozen=True)
class QuantizedDataType(DataType):
block_size: int
@@ -77,6 +81,7 @@ class QuantizedDataType(DataType):
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
+
@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python!
@@ -86,6 +91,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
+
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
@@ -94,10 +100,11 @@ class Q8_0QuantizedDataType(QuantizedDataType):
yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
+
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
- dtype = np.dtype(np.float32), valid_conversions = [],
- ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
- quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
+ dtype = np.dtype(np.float32), valid_conversions = [],
+ ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
+ quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
@@ -116,6 +123,8 @@ SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
# TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType
# TODO: move to `gguf.py`
+
+
class GGMLFileType(enum.IntEnum):
AllF32 = 0
MostlyF16 = 1 # except 1d tensors
@@ -128,6 +137,7 @@ class GGMLFileType(enum.IntEnum):
# 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32
+
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
@@ -138,6 +148,7 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
# hparams loading
#
+
@dataclass
class Params:
n_vocab: int
@@ -167,11 +178,11 @@ class Params:
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
+ n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
+ n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
- n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
+ n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
@@ -308,7 +319,7 @@ class BpeVocab:
(item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary.
- if item['content'] not in self.bpe_tokenizer )
+ if item['content'] not in self.bpe_tokenizer)
vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
@@ -326,7 +337,6 @@ class BpeVocab:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
- from transformers.models.gpt2 import tokenization_gpt2
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
for i, _ in enumerate(tokenizer):
@@ -406,6 +416,7 @@ class SentencePieceVocab:
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
+
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
#
@@ -413,13 +424,14 @@ Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
# TODO: reuse (probably move to gguf.py?)
#
+
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
- #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
+ # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
class Tensor(metaclass=ABCMeta):
@@ -500,7 +512,7 @@ class LazyTensor:
ret = self._load()
# Should be okay if it maps to the same numpy type?
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
- (self.data_type, ret.data_type, self.description)
+ (self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> LazyTensor:
@@ -588,6 +600,7 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTe
return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
+
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
@@ -595,6 +608,7 @@ def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
+
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().part(n_part)
@@ -744,6 +758,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
In = TypeVar('In')
Out = TypeVar('Out')
+
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
@@ -778,6 +793,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
break
yield result
+
def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
@@ -796,7 +812,7 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
class OutputFile:
- def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
+ def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None:
@@ -876,7 +892,7 @@ class OutputFile:
self.gguf.close()
@staticmethod
- def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
+ def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out, endianess=endianess)
@@ -938,8 +954,9 @@ class OutputFile:
of.close()
+
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
- wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
+ wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32
@@ -952,10 +969,12 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
raise Exception(f"Unexpected combination of types: {name_to_type}")
+
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
for (name, tensor) in model.items()}
+
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
@@ -968,7 +987,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
print(f"Permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
- #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
+ # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
@@ -993,6 +1012,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
return out
+
def nth_multifile_path(path: Path, n: int) -> Path | None:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model.
@@ -1174,8 +1194,8 @@ def main(args_in: list[str] | None = None) -> None:
# FIXME: Try to respect vocab_dir somehow?
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
- load_merges = args.vocabtype == 'bpe',
- n_vocab = vocab.vocab_size)
+ load_merges = args.vocabtype == 'bpe',
+ n_vocab = vocab.vocab_size)
outfile = args.outfile
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
print(f"Wrote {outfile}")
@@ -1188,8 +1208,8 @@ def main(args_in: list[str] | None = None) -> None:
vocab = load_vocab(vocab_dir, args.vocabtype)
# FIXME: Try to respect vocab_dir somehow?
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
- load_merges = args.vocabtype == 'bpe',
- n_vocab = vocab.vocab_size)
+ load_merges = args.vocabtype == 'bpe',
+ n_vocab = vocab.vocab_size)
model = model_plus.model
model = convert_model_names(model, params)
diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py
index ab7382c4..b8ec977c 100644
--- a/gguf-py/gguf/gguf_writer.py
+++ b/gguf-py/gguf/gguf_writer.py
@@ -221,7 +221,7 @@ class GGUFWriter:
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
if self.use_temp_file and self.temp_file is None:
- fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
+ fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
fp.seek(0)
self.temp_file = fp
diff --git a/tests/test-tokenizer-0-falcon.py b/tests/test-tokenizer-0-falcon.py
index 65e1c0db..4f06ec9b 100644
--- a/tests/test-tokenizer-0-falcon.py
+++ b/tests/test-tokenizer-0-falcon.py
@@ -14,34 +14,34 @@ dir_tokenizer = args.dir_tokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
tests = [
- "",
- " ",
- " ",
- " ",
- "\t",
- "\n",
- "\t\n",
- "Hello world",
- " Hello world",
- "Hello World",
- " Hello World",
- " Hello World!",
- "Hello, world!",
- " Hello, world!",
- " this is πŸ¦™.cpp",
- "w048 7tuijk dsdfhu",
- "Π½Π΅Ρ‰ΠΎ Π½Π° Π‘ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ",
- "αž€αžΆαž“αŸ‹αžαŸ‚αž–αž·αžŸαŸαžŸαž’αžΆαž…αžαž›αž…αŸαž‰",
- "πŸš€ (normal) πŸ˜Άβ€πŸŒ«οΈ (multiple emojis concatenated) βœ… (only emoji that has its own token)",
- "Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello\n Hello",
- "\n =",
- "' era",
- ]
+ "",
+ " ",
+ " ",
+ " ",
+ "\t",
+ "\n",
+ "\t\n",
+ "Hello world",
+ " Hello world",
+ "Hello World",
+ " Hello World",
+ " Hello World!",
+ "Hello, world!",
+ " Hello, world!",
+ " this is πŸ¦™.cpp",
+ "w048 7tuijk dsdfhu",
+ "Π½Π΅Ρ‰ΠΎ Π½Π° Π‘ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ",
+ "αž€αžΆαž“αŸ‹αžαŸ‚αž–αž·αžŸαŸαžŸαž’αžΆαž…αžαž›αž…αŸαž‰",
+ "πŸš€ (normal) πŸ˜Άβ€πŸŒ«οΈ (multiple emojis concatenated) βœ… (only emoji that has its own token)",
+ "Hello",
+ " Hello",
+ " Hello",
+ " Hello",
+ " Hello",
+ " Hello\n Hello",
+ "\n =",
+ "' era",
+]
for text in tests:
print('text: ', text)
diff --git a/tests/test-tokenizer-0-llama.py b/tests/test-tokenizer-0-llama.py
index 21df8e6e..f3d4d7e3 100644
--- a/tests/test-tokenizer-0-llama.py
+++ b/tests/test-tokenizer-0-llama.py
@@ -14,32 +14,32 @@ dir_tokenizer = args.dir_tokenizer
tokenizer = SentencePieceProcessor(dir_tokenizer + '/tokenizer.model')
tests = [
- "",
- " ",
- " ",
- " ",
- "\t",
- "\n",
- "\t\n",
- "Hello world",
- " Hello world",
- "Hello World",
- " Hello World",
- " Hello World!",
- "Hello, world!",
- " Hello, world!",
- " this is πŸ¦™.cpp",
- "w048 7tuijk dsdfhu",
- "Π½Π΅Ρ‰ΠΎ Π½Π° Π‘ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ",
- "αž€αžΆαž“αŸ‹αžαŸ‚αž–αž·αžŸαŸαžŸαž’αžΆαž…αžαž›αž…αŸαž‰",
- "πŸš€ (normal) πŸ˜Άβ€πŸŒ«οΈ (multiple emojis concatenated) βœ… (only emoji that has its own token)",
- "Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello\n Hello",
- ]
+ "",
+ " ",
+ " ",
+ " ",
+ "\t",
+ "\n",
+ "\t\n",
+ "Hello world",
+ " Hello world",
+ "Hello World",
+ " Hello World",
+ " Hello World!",
+ "Hello, world!",
+ " Hello, world!",
+ " this is πŸ¦™.cpp",
+ "w048 7tuijk dsdfhu",
+ "Π½Π΅Ρ‰ΠΎ Π½Π° Π‘ΡŠΠ»Π³Π°Ρ€ΡΠΊΠΈ",
+ "αž€αžΆαž“αŸ‹αžαŸ‚αž–αž·αžŸαŸαžŸαž’αžΆαž…αžαž›αž…αŸαž‰",
+ "πŸš€ (normal) πŸ˜Άβ€πŸŒ«οΈ (multiple emojis concatenated) βœ… (only emoji that has its own token)",
+ "Hello",
+ " Hello",
+ " Hello",
+ " Hello",
+ " Hello",
+ " Hello\n Hello",
+]
for text in tests: