summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXuan Son Nguyen <thichthat@gmail.com>2024-06-15 18:53:40 +0200
committerGitHub <noreply@github.com>2024-06-15 18:53:40 +0200
commit0c7b3595b9e5ad2355818e259f06b0dc3f0065b3 (patch)
tree1146ce43d46ad84568728a0a78ee5aa79c0e9e20
parent7b2f4a7d193ef2475259bbe7656fcccfab4b1217 (diff)
Add `cvector-generator` example (#7514)
* add control-vector-generator * calc diff * add comments * proof-of-concept stdlib implementation Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish. * param parsing, refactor, comments Added basic command-line parameters for outfile and one each positive/negative prompt. Refactored some messy code in PCA computation and GGUF exporting. Left a bunch of comments regarding further work needed. * example template completions Implements an example template set built from the positive/negative prompts like the control vector Python implementation. * add multi prompts, multi-thread for PCA * fix mem error * add debugs * fix matrix transpose multiplication you have got to be kidding me * preliminary template/multiprompt support model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish * fix zero output & param parsing, functional templating fixed a bug where the output file had no tensor data/was all zero fixed a bug where single hyphen flags were not being correctly parsed implements creation of templated prompts from input (still need to adapt based on model) * fix square_diff matmul index range and CRLF->LF line endings fixed a logic error where square_diff would not multiply all rows fixed a formatting error where the provided completions.txt had CRLF line endings * add command-line args for num threads, num completions file lines, always reload model refactored a few things and did what the commit message says on the tin * code aestheticization * fix compiler warnings * in-series multithreading for prompt embedding? added commented-out code to attempt to start implementing mutlithreading for embedding in main * remove unnecessary multithreading * interim fix memory leak * translated everything but PCA (I think) * tentatively translate the rest * fix ggml errors and make new ones at least it compiles and runs * fix cb_eval * temporary commit while I move dev environments it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent * update debug statements * pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped * update comments * (wip) refactor * clean up PCA ggml implementation * fix shape of v_diff_original * add n_batch for pca * working version * remember to copy back the last_eigenvector * fix n_completions * bring back n_completions * default n_pca_batch to 20 * fix macos build * add to makefile all targets * use ggml_format_name * add readme * fix .editorconfig * use ggml_backend_tensor_copy * attemp to fix compile problem on mac * fix compile warn * reuse allocr * move param parser to common * better error handling * clean up a bit * add print_usage * shorten help msg * beautify help msg * escape prompt by default * change compile target to llama-cvector-generator * typo * disable GPU for PCA * code style --------- Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
-rw-r--r--.editorconfig3
-rw-r--r--Makefile5
-rw-r--r--common/common.cpp60
-rw-r--r--common/common.h9
-rw-r--r--examples/CMakeLists.txt1
-rw-r--r--examples/cvector-generator/CMakeLists.txt5
-rw-r--r--examples/cvector-generator/README.md34
-rw-r--r--examples/cvector-generator/completions.txt582
-rw-r--r--examples/cvector-generator/cvector-generator.cpp499
-rw-r--r--examples/cvector-generator/negative.txt1
-rw-r--r--examples/cvector-generator/pca.hpp322
-rw-r--r--examples/cvector-generator/positive.txt1
12 files changed, 1522 insertions, 0 deletions
diff --git a/.editorconfig b/.editorconfig
index 16d16b3b..bd525e13 100644
--- a/.editorconfig
+++ b/.editorconfig
@@ -26,3 +26,6 @@ indent_size = 2
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
+
+[examples/cvector-generator/*.txt]
+insert_final_newline = unset
diff --git a/Makefile b/Makefile
index 744fe573..5ab3481f 100644
--- a/Makefile
+++ b/Makefile
@@ -38,6 +38,7 @@ BUILD_TARGETS = \
llama-tokenize \
llama-train-text-from-scratch \
llama-vdot \
+ llama-cvector-generator \
tests/test-c.o
# Binaries only useful for tests
@@ -922,6 +923,10 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
+llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
+ $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
+ $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
+
llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
diff --git a/common/common.cpp b/common/common.cpp
index 1591790e..73ff0e85 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -1576,6 +1576,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
return true;
}
params.out_file = argv[i];
+ params.cvector_outfile = argv[i];
return true;
}
if (arg == "-ofreq" || arg == "--output-frequency") {
@@ -1610,6 +1611,55 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.i_chunk = std::stoi(argv[i]);
return true;
}
+ // cvector params
+ if (arg == "--completions-file") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.cvector_completions_file = argv[i];
+ return true;
+ }
+ if (arg == "--positive-file") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.cvector_positive_file = argv[i];
+ return true;
+ }
+ if (arg == "--negative-file") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.cvector_negative_file = argv[i];
+ return true;
+ }
+ if (arg == "--completions") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.n_completions = std::stoi(argv[i]);
+ return true;
+ }
+ if (arg == "--pca-batch") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.n_pca_batch = std::stoi(argv[i]);
+ return true;
+ }
+ if (arg == "--pca-iter") {
+ if (++i >= argc) {
+ invalid_param = true;
+ return true;
+ }
+ params.n_pca_iterations = std::stoi(argv[i]);
+ return true;
+ }
#ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters
if (log_param_single_parse(argv[i])) {
@@ -1931,6 +1981,16 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
#endif // LOG_DISABLE_LOGS
+ options.push_back({ "cvector" });
+ options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
+ options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
+ options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
+ options.push_back({ "cvector", " --completions-file FNAME",
+ "completions file (default: '%s')", params.cvector_completions_file.c_str() });
+ options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions });
+ options.push_back({ "cvector", " --batch-pca N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
+ options.push_back({ "cvector", " --iter-pca N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
+
printf("usage: %s [options]\n", argv[0]);
for (const auto & o : options) {
diff --git a/common/common.h b/common/common.h
index 2345d855..58ed72f4 100644
--- a/common/common.h
+++ b/common/common.h
@@ -232,6 +232,15 @@ struct gpt_params {
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
+
+ // cvector-generator params
+ int n_completions = 64;
+ int n_pca_batch = 20;
+ int n_pca_iterations = 1000;
+ std::string cvector_outfile = "control_vector.gguf";
+ std::string cvector_completions_file = "examples/cvector-generator/completions.txt";
+ std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
+ std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
};
void gpt_params_handle_model_default(gpt_params & params);
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index d6ce35f4..0b51c44c 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -12,6 +12,7 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
+ add_subdirectory(cvector-generator)
add_subdirectory(baby-llama)
add_subdirectory(batched-bench)
add_subdirectory(batched)
diff --git a/examples/cvector-generator/CMakeLists.txt b/examples/cvector-generator/CMakeLists.txt
new file mode 100644
index 00000000..0a559d60
--- /dev/null
+++ b/examples/cvector-generator/CMakeLists.txt
@@ -0,0 +1,5 @@
+set(TARGET llama-cvector-generator)
+add_executable(${TARGET} cvector-generator.cpp pca.hpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/cvector-generator/README.md b/examples/cvector-generator/README.md
new file mode 100644
index 00000000..7b0e79c1
--- /dev/null
+++ b/examples/cvector-generator/README.md
@@ -0,0 +1,34 @@
+# cvector-generator
+
+This example demonstrates how to generate a control vector using gguf models.
+
+Related PRs:
+- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
+- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
+- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
+
+## Examples
+
+```sh
+# CPU only
+./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf
+
+# With GPU
+./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99
+
+# With advanced options
+./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100
+
+# To see help message
+./cvector-generator -h
+# Then, have a look at "cvector" section
+```
+
+## Tips and tricks
+
+If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example:
+
+```
+<|im_start|>system\nAct like a person who is extremely happy.<|im_end|>
+<|im_start|>system\nYou are in a very good mood today<|im_end|>
+```
diff --git a/examples/cvector-generator/completions.txt b/examples/cvector-generator/completions.txt
new file mode 100644
index 00000000..abc45ffd
--- /dev/null
+++ b/examples/cvector-generator/completions.txt
@@ -0,0 +1,582 @@
+
+That game
+I can see
+Hmm, this
+I can relate to
+Who is
+I understand the
+Ugh,
+What the hell was
+Hey, did anyone
+Although
+Thank you for choosing
+What are you
+Oh w
+How dare you open
+It was my pleasure
+I'm hon
+I appreciate that you
+Are you k
+Whoever left this
+It's always
+Ew,
+Hey, I l
+Hello? Is someone
+I understand that
+That poem
+Aww, poor
+Hey, it
+Alright, who
+I didn't
+Well, life
+The document
+Oh no, this
+I'm concerned
+Hello, this is
+This art
+Hmm, this drink
+Hi there!
+It seems
+Is
+Good
+I can't
+Ex
+Who are
+I can see that
+Wow,
+Today is a
+Hey friend
+Sometimes friends
+Oh, this old
+The weather outside
+This place is sur
+I appreciate your input
+Thank you for the
+Look at
+I'm disappoint
+To my
+How dare you
+That's an
+This piece of art
+Eww
+This park is
+This is incredible
+Oh no, someone
+Exc
+Well, it'
+I warned
+Hey, I understand
+Hey, I saw
+How dare you go
+What the he
+Hey
+It's
+Hello? Hello?
+It
+Oh no!
+This is the perfect
+Good morning,
+Oh no, there
+It's so
+Yeah
+Uh,
+Hello everyone
+Who turned off
+The weather
+Who'
+Hey, this
+Wait,
+Eww, gross
+Excuse
+It seems like you
+Thank you so
+What happened?
+Oh my g
+I am deeply sad
+I war
+Okay, let'
+Hey, that
+That was a beautiful
+Oh no! That
+What happened
+Hey there
+The artist'
+What?!
+Hey, it'
+I am disappoint
+It seems like
+Oh no! The
+This park is a
+If you
+Yes! I did
+It sounds
+What
+Who is it
+Hmm, that
+That's strange
+Yeah, that was
+That's interesting
+This park
+What the hell
+Who is that
+I feel like my
+Oh well
+What the hell is
+Hello? Hello
+To my dearest
+Bless you!\"
+Thank you for
+Oh, looks like
+Can you please
+This place is
+Eww, what
+Bless you
+Is everything
+Hey, I just
+Whoever left these
+Well, that'
+I feel
+Hey, do you
+It's sad
+Oh no, it
+Hey, that'
+Oh my god,
+Thank you,
+Hello little one,
+I apolog
+Hey team, I
+How dare you read
+Who is this and
+Whoever left
+Hi there! W
+A
+If you have
+I was
+U
+Bless
+Well, this
+Oh, I'
+It's a
+Eww,
+Is everything okay?
+Oh, I
+Hello, can you
+Al
+That was a great
+What are
+I understand that not
+Oh no, not
+Who is it?\"
+Hey, can we
+Whoever is taking
+I would love to
+Hey, I noticed
+Hey, could
+I understand that there
+Hello?
+D
+Oh man, I
+Thank you so much
+Oh no, my
+Dear [Name
+Uh
+I remember
+Hey, who
+Well, it
+Are you
+I understand that it
+Hey, is
+I would
+Who is this
+Excuse me
+Alright
+I am thrilled
+Sometimes friends have
+Who the
+It's interesting
+I would love
+E
+Hello? Is anyone
+Well, this is
+This place
+Well,
+I warned you
+Hey, watch where
+Oh my
+That'
+Sometimes friends have different
+I understand that everyone
+What?
+What do these notes
+I can relate
+I'm not
+I understand
+To my dear
+Guys
+Well
+Hey, I appreciate
+Wow, what
+Dear
+That melody
+Who the hell
+Today is
+Hello little
+Wow, look
+That's great
+Love is never wrong
+I'm having
+Whoa, did
+Ugh
+Can you please provide
+I miss you,
+I feel uncom
+I know
+Ugh, this
+Hey, watch
+Oh great, a
+I didn
+Okay
+That game of char
+Oh
+I appreciate
+Who's there
+I am so
+Oh great, someone
+Hey, could you
+I remember wondering
+Wait, what?
+What do
+Hello? Can
+Hey there,
+That game of
+This is incred
+Oh my gosh
+Oh great, f
+I appreciate your
+It sounds like
+What the heck
+Okay, I understand
+Ew
+I understand that this
+Uh, hi
+Hi everyone!
+What the hell?
+Thank you for your
+Oh no, the
+Wow, I
+Who turned
+Dear [
+Whoever
+This is a
+Whoa, he
+What in the world
+Although the physical
+Hello, who is
+That's amaz
+Hey, I know
+Okay, that
+Hi everyone
+Hey, is everything
+I understand your fr
+Oh no, poor
+Oh, look
+Good morning
+Ew, gross
+Oh no, did
+Look at the family
+Hey team
+Yes!
+Hey, can I
+Okay, that'
+It's great
+Love is
+Hey, what
+Good morning, world
+Who is it?
+That poem really reson
+I
+That's
+I understand the task
+Gu
+Hello? Who'
+This postcard is
+Whoa,
+Oh, that
+I understand that I
+Whoever is
+Hello? Who is
+I'm really
+Wow, this
+Can
+This artwork really
+This is a shame
+I miss you too
+Who are you?
+Today is a difficult
+Hey, just
+Are you okay
+I am
+Hi,
+Wow, that
+Hey there! Can
+Okay, stay
+Oh great, just
+Yeah,
+Hello? Can you
+Oh, looks
+Thank you for sharing
+I'm glad
+Hey, is that
+Hmm
+It was my
+It sounds like you
+Wow, your
+I was promised certain
+That was such a
+Thank
+Excuse you
+That was
+Hey team,
+I feel un
+It was
+What'
+Hey friend, I
+How
+Saying goodbye
+That
+It's heart
+How dare
+Oh,
+Hello, may
+What's this
+Thank you for recogn
+Aww, that
+Oh, I remember
+Hmm, that'
+I miss
+I know this
+Wait
+Is everything okay
+Who is that person
+Wow, you
+Oh great
+I'm sad
+Wow, the
+I am very disappoint
+Who turned off the
+I understand that things
+I'm very
+Hi
+That's very
+Okay, I
+Oh no,
+Wow, there
+What's wrong
+I apologize for
+Hey, I
+Can I help you
+Oh, I didn
+Alright,
+Oh wow,
+Oh my goodness
+I know this event
+What in the
+Saying
+Yeah, that
+Guys, I
+Hey, this v
+This post
+Are
+Hey, can
+Hello? Is
+I can only imagine
+Oh, that sounds
+Hey, is anyone
+I am disappointed
+Hello,
+Hey everyone, I
+That was such
+It's okay
+The artist
+Whoa
+I understand that mistakes
+Can I help
+Who
+Hi everyone! I
+Hey, can you
+Wow, how
+Today
+Oh no, I
+Oh well, I
+Well, that
+This is the
+Yes! I finally
+Hey there little
+Hello everyone!
+Love is never
+Look at the
+This postcard
+Oh great,
+Can I
+Hmm, this is
+I understand your
+Oh, look at
+B
+I'm so
+Whoa, this
+W
+Oh, this
+Sometimes
+This piece of
+What the
+That was a
+Hey, do
+Oh no
+Whoa, what
+I feel like I
+The documentary
+Hello
+Hello little one
+I understand that my
+Eww, that
+Wow, an
+Yes! Finally,
+Although the physical location
+Whoever is watching
+That movie
+I remember wondering about
+Hey there, little
+Who's
+Hello, who
+Hello everyone! Thank
+Hello, can
+That's too
+Hey, just wanted
+Hey there, I
+Saying good
+Hey there!
+Who is there?
+Oh my good
+I am very
+Oh no, what
+Wow, thank
+I was promised
+Hi, is
+Hey, I'
+Guys, the
+Oh no, that
+Who is there
+Hello, this
+That movie really touched
+If you have something
+The documentary was
+I'm starting
+Are you kidd
+That movie really
+Hey everyone,
+Thank you for considering
+I didn'
+Yes! I
+Can you
+Oh my god
+Hey, whoever
+That melody really
+Thank you, little
+Hello, may I
+Look
+Wow, we
+It looks
+What do these
+Oh wow
+I apologize
+What are you all
+It's such
+It's clear
+Hey, I was
+Hey friend,
+I can only
+The weather outside is
+Eww, this
+I miss you
+Wow
+Aww,
+Hi, is there
+This artwork
+Okay,
+Oh well,
+This
+I'
+Say
+Hey there little gu
+Hmm,
+Whoa, who
+I am thr
+Oh man
+Okay, stay calm
+I'm happy
+Oh, this cur
+Oh man,
+I'm sorry
+Hello? Who
+What?! That
+This piece
+Hey everyone
+That's so
+Are you okay?
+What happened? Where
+Hi there
+The
+Who the hell entered
+I can
+Guys,
+What's
+What in
+It's important
+I'm
+I'm coming
+It'
+Yes! Finally
+Wait, what
+Wow, reading
+I'm surprised
+Hey, did
+Hey,
+Okay, let
+I understand that you
+Who the hell threw
+Eww, who
+Thank you for thinking
+Who is this?\"
+I am deeply
+Thank you for including
+Oh no, an
+It looks like you
+Aww
+I'm confused
+Wow, it
+That poem really
+Yes
+Hey there, is
+Hey, what'
+Thank you for remember
+To
+This is
+Thank you for making
+I can'
+That mel
+Wow, they
+I feel like
+Although the
+Who are you
+Love
+If
+What the hell are
+I am so sad
+Oh, I found
+Thank you
+It looks like
+Well, life is
+I appreciate that
+The artist's
+Whoa, that
+It's never \ No newline at end of file
diff --git a/examples/cvector-generator/cvector-generator.cpp b/examples/cvector-generator/cvector-generator.cpp
new file mode 100644
index 00000000..9941683d
--- /dev/null
+++ b/examples/cvector-generator/cvector-generator.cpp
@@ -0,0 +1,499 @@
+#include "common.h"
+#include "llama.h"
+#include "ggml.h"
+#include "pca.hpp"
+
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+#ifdef GGML_USE_METAL
+#include "ggml-metal.h"
+#endif
+
+#include <cstdio>
+#include <string>
+#include <tuple>
+#include <vector>
+#include <algorithm>
+#include <iostream>
+#include <fstream>
+#include <climits>
+
+
+//////////////////////////////////////////////////
+// utils
+
+template <class Iter>
+static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
+ std::string ret;
+ for (; begin != end; ++begin) {
+ ret += llama_token_to_piece(ctx, *begin);
+ }
+
+ return ret;
+}
+
+static void print_usage(int argc, char ** argv, const gpt_params & params) {
+ gpt_params_print_usage(argc, argv, params);
+
+ printf("\nexample usage:\n");
+ printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]);
+ printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]);
+ printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100\n", argv[0]);
+ printf("\n");
+}
+
+//////////////////////////////////////////////////
+
+
+// cb_eval is reused for each pair of positive - negative prompt
+struct callback_data {
+ ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
+
+ int n_layers = 0;
+ int n_tokens = 0;
+ bool is_eval_pos = true;
+
+ // each element of the vector correspond to one layer
+ std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
+ std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
+ std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
+
+ // save a tensor into either v_pos or v_neg (decided by is_eval_pos)
+ void save_tensor_for_layer(struct ggml_tensor * t) {
+ GGML_ASSERT(t->type == GGML_TYPE_F32);
+
+ if (ctx_ggml == nullptr) {
+ // alloc a new ctx_ggml if needed
+ struct ggml_init_params params_ggml = {
+ /*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ctx_ggml = ggml_init(params_ggml);
+ }
+
+ // copy tensor data
+ auto n_bytes = ggml_nbytes(t);
+ struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
+ t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
+ ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
+ ggml_set_name(t_layer, ggml_get_name(t));
+ //print_debug_tensor(t_layer);
+
+ if (is_eval_pos) {
+ v_pos.push_back(t_layer);
+ } else {
+ v_neg.push_back(t_layer);
+ }
+ }
+
+ // calculate diff (v_pos - v_neg) and place the result back to v_pos
+ // all zero rows in the diff tensor will also be removed
+ // NOTE: final layer is ignored. we only have (n_layers - 1) to process
+ std::vector<struct ggml_tensor *> calc_diff() {
+ for (float il = 0; il < v_pos.size(); il++) {
+ float * a = (float *) v_pos[il]->data;
+ float * b = (float *) v_neg[il]->data;
+ size_t n_elem = ggml_nelements(v_pos[il]);
+ for (size_t j = 0; j < n_elem; j++) {
+ a[j] -= b[j];
+ }
+ //print_debug_tensor(v_pos[i]);
+ auto diff_filtered = filter_nonzero_rows(v_pos[il]);
+ v_diff_filtered.push_back(diff_filtered);
+ }
+ return v_diff_filtered; // for convinient, we return the result std::vector
+ }
+
+ // delete zero rows from a given 2D tensor
+ struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
+ //printf("filter_nonzero_rows\n");
+ auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
+ // check if given row containing all zero elements
+ int n_cols = t->ne[0]; // hint: should be equal to n_embd
+ for (int col = 0; col < n_cols; ++col) {
+ if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
+ return false;
+ }
+ }
+ return true;
+ };
+ std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
+ for (int i_row = 0; i_row < a->ne[1]; i_row++) {
+ if (!is_row_all_zeros(a, i_row, 1e-6)) {
+ rows_to_copy.push_back(i_row);
+ }
+ }
+
+ // get "n_nonzero_rows" for the output "diff_filtered"
+ int n_nonzero_rows = rows_to_copy.size();
+ //printf("n_nonzero_rows: %d\n", n_nonzero_rows);
+ int n_embd = a->ne[0];
+ GGML_ASSERT(n_nonzero_rows > 0);
+
+ // diff_filtered: [n_embd, n_nonzero_rows]
+ struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
+ ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
+ ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
+ diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
+
+ // copy non-zero rows
+ for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
+ int src_row = rows_to_copy[dest_row];
+ for (int i = 0; i < n_embd; i++) {
+ float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
+ ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
+ }
+ }
+
+ //print_debug_tensor(diff_filtered);
+
+ return diff_filtered;
+ }
+
+ // we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
+ void reset() {
+ for (auto ptr : v_pos) free(ptr->data);
+ for (auto ptr : v_neg) free(ptr->data);
+ for (auto ptr : v_diff_filtered) free(ptr->data);
+ v_pos.clear();
+ v_neg.clear();
+ v_diff_filtered.clear();
+ if (ctx_ggml) {
+ ggml_free(ctx_ggml);
+ }
+ ctx_ggml = nullptr;
+ }
+};
+
+/**
+ * process_ctx is used to store the ggml context for pre-post processing the diff vectors
+ * in short, input => v_diff and output => v_final
+ */
+struct train_context {
+ ggml_context * ctx_ggml;
+ int n_embd;
+ int n_layers;
+
+ /* pair of prompts to be used for generating final vector */
+ std::vector<std::string> positive_entries;
+ std::vector<std::string> negative_entries;
+
+ // each element of the vector correspond to one layer
+ // NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
+ // NOTE (2): v_diff is transposed from v_diff_tmp
+ std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
+ std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
+
+ // to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
+ // v_diff_tmp will get converted unto v_diff later on
+ std::vector<std::vector<uint8_t>> v_diff_tmp;
+
+ train_context(int n_embd_, int n_layers_) {
+ n_embd = n_embd_;
+ n_layers = n_layers_;
+ struct ggml_init_params params_ggml = {
+ /*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ctx_ggml = ggml_init(params_ggml);
+ for (int il = 0; il < n_layers - 1; il++) {
+ std::vector<uint8_t> empty;
+ v_diff_tmp.push_back(empty);
+ auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
+ t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
+ v_final.push_back(t);
+ }
+ }
+
+ // add new rows into existing tensor in v_diff_tmp
+ void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
+ GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
+ for (int il = 0; il < n_layers - 1; il++) {
+ auto t = diff_filtered[il];
+ auto & diff_tmp = v_diff_tmp[il];
+ size_t curr_size = diff_tmp.size();
+ diff_tmp.resize(curr_size + ggml_nbytes(t));
+ memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
+ }
+ }
+
+ // build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
+ // TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
+ void build_v_diff() {
+ printf("build_v_diff\n");
+ for (int il = 0; il < n_layers - 1; il++) {
+ auto & diff_tmp = v_diff_tmp[il];
+ int n_elem = diff_tmp.size() / sizeof(float);
+ GGML_ASSERT(n_elem % n_embd == 0);
+ int n_rows = n_elem / n_embd;
+ struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd);
+ ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
+ // copy data & transpose
+ diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
+ float * arr = (float *) diff_tmp.data();
+ for (int ir = 0; ir < n_rows; ++ir) {
+ for (int ic = 0; ic < n_embd; ++ic) {
+ float f = arr[ir*n_embd + ic];
+ ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
+ }
+ }
+ v_diff.push_back(diff);
+ print_debug_tensor(diff);
+ // free memory of diff_tmp
+ diff_tmp.resize(0);
+ }
+ }
+
+ ~train_context() {
+ for (auto ptr : v_final) free(ptr->data);
+ for (auto ptr : v_diff) free(ptr->data);
+ // no need to free v_diff_tmp, since we didn't use malloc
+ ggml_free(ctx_ggml);
+ }
+};
+
+struct tokenized_prompt {
+ std::vector<llama_token> tokens_pos;
+ std::vector<llama_token> tokens_neg;
+ size_t max_seq_len;
+
+ tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
+ const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
+ tokens_pos = ::llama_tokenize(ctx, pos, add_bos);
+ tokens_neg = ::llama_tokenize(ctx, neg, add_bos);
+ max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
+ padding_seq(ctx, tokens_pos, max_seq_len);
+ padding_seq(ctx, tokens_neg, max_seq_len);
+ }
+
+ void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
+ // TODO: customize padding token
+ std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
+ llama_token pad_tok = pad_tokens.back();
+ while (tokens.size() < len) {
+ tokens.push_back(pad_tok);
+ }
+ }
+};
+
+//////////////////////////////////////////////////
+
+template <typename T>
+static std::string to_string(const T & val) {
+ std::stringstream ss;
+ ss << val;
+ return ss.str();
+}
+
+static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
+ std::vector<std::string> output;
+ std::ifstream file(path);
+ if (!file.is_open()) {
+ fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
+ exit(1);
+ }
+ std::string line;
+ while (std::getline(file, line)) {
+ bool is_skip = skip_empty_lines && line.empty();
+ if (!is_skip) {
+ string_process_escapes(line);
+ output.push_back(line);
+ }
+ }
+ file.close();
+ return output;
+}
+
+//////////////////////////////////////////////////
+
+static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
+ auto * cb_data = (callback_data *) user_data;
+ static const char * l_out_name = "l_out";
+ const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
+
+ if (ask) {
+ return is_l_out;
+ }
+
+ if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
+ return true;
+ }
+
+ // save the tensor to current context
+ cb_data->save_tensor_for_layer(t);
+ return true;
+}
+
+static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
+ llama_kv_cache_clear(ctx);
+ if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
+ return false;
+ }
+ return true;
+}
+
+static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
+ struct gguf_context * ctx = gguf_init_empty();
+
+ const std::string arch = "controlvector";
+ gguf_set_val_str(ctx, "general.architecture", arch.c_str());
+ gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
+ gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
+
+ for (size_t i = 0; i < v_ctrl.size(); ++i) {
+ gguf_add_tensor(ctx, v_ctrl[i]);
+ print_debug_tensor(v_ctrl[i]);
+ printf("Added tensor: %s\n", v_ctrl[i]->name);
+ }
+
+ printf("%s: writing file...\n", __func__);
+ gguf_write_to_file(ctx, fname.c_str(), false);
+ printf("%s: wrote file '%s'\n", __func__, fname.c_str());
+ gguf_free(ctx);
+}
+
+/**
+ * Load prompt files and completion file.
+ * Then format each pair of prompt + completion to make an entry.
+ */
+static int prepare_entries(gpt_params & params, train_context & ctx_train) {
+ // load prompts
+ std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
+ std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
+ if (positive_prompts.size() != negative_prompts.size()) {
+ fprintf(stderr, "number of positive and negative prompts must be equal\n");
+ return 1;
+ }
+ if (positive_prompts.empty()) {
+ fprintf(stderr, "must provide at least one prompt pair\n");
+ return 1;
+ }
+
+ // create templated prompts
+ std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false);
+ auto format_template = [](std::string persona, std::string suffix) {
+ // entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST]"
+ return persona + " " + suffix;
+ };
+ for (size_t i = 0; i < positive_prompts.size(); ++i) {
+ for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) {
+ // TODO replicate the truncations done by the python implementation
+ ctx_train.positive_entries.push_back(format_template(positive_prompts[i], completions[j]));
+ ctx_train.negative_entries.push_back(format_template(negative_prompts[i], completions[j]));
+ }
+ }
+ return 0;
+}
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ print_usage(argc, argv, params);
+ return 1;
+ }
+
+ if (params.n_pca_iterations % params.n_pca_batch != 0) {
+ fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
+ return 1;
+ }
+
+
+ callback_data cb_data;
+
+ // pass the callback to the backend scheduler
+ // it will be executed for each node during the graph computation
+ params.cb_eval = cb_eval;
+ params.cb_eval_user_data = &cb_data;
+ params.warmup = false;
+
+ print_build_info();
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ // load the model to get hparams
+ llama_model * model;
+ llama_context * ctx;
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+
+ // int n_ctx = llama_n_ctx(ctx);
+ int n_layers = llama_n_layer(model);
+ int n_embd = llama_n_embd(model);
+ // get model hint param (a.k.a model arch name)
+ char model_hint[128];
+ llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
+
+ // init train_context
+ train_context ctx_train(n_embd, n_layers);
+
+ // load and prepare entries for training
+ prepare_entries(params, ctx_train);
+
+ // we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
+ std::vector<tokenized_prompt> tokenized_prompts;
+ size_t n_total_tokens = 0;
+ for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
+ tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
+ n_total_tokens += 2 * t.max_seq_len;
+ tokenized_prompts.push_back(std::move(t));
+ }
+
+ std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
+
+ for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
+ bool success = false;
+ tokenized_prompt t = tokenized_prompts[i];
+ cb_data.n_layers = n_layers;
+ cb_data.n_tokens = t.max_seq_len;
+
+ printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
+ (int) i+1, (int) ctx_train.positive_entries.size(),
+ tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
+ tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
+ (int) t.max_seq_len);
+
+ cb_data.is_eval_pos = true;
+ success = get_hidden_layers(ctx, t.tokens_pos);
+ if (!success) break;
+
+ cb_data.is_eval_pos = false;
+ success = get_hidden_layers(ctx, t.tokens_neg);
+ if (!success) break;
+
+ // calculate diff and remove all zero rows
+ auto v_diff_filtered = cb_data.calc_diff();
+
+ // save & concat the filtered v_diff to ctx_train
+ ctx_train.concat_diff_tmp(v_diff_filtered);
+
+ // reset for next iteration
+ cb_data.reset();
+ }
+
+ // done with the model, we can now free it to make gain some memory
+ printf("Done evaluate prompts, unload model...\n");
+ llama_free(ctx);
+ llama_free_model(model);
+
+ // prepare ctx_train for PCA
+ ctx_train.build_v_diff();
+
+ // run PCA
+ PCA::pca_params pca_params;
+ pca_params.n_threads = params.n_threads;
+ pca_params.n_batch = params.n_pca_batch;
+ pca_params.n_iterations = params.n_pca_iterations;
+ PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
+
+ // write output vectors to gguf
+ export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
+
+ llama_backend_free();
+
+ return 0;
+}
diff --git a/examples/cvector-generator/negative.txt b/examples/cvector-generator/negative.txt
new file mode 100644
index 00000000..2ac3387f
--- /dev/null
+++ b/examples/cvector-generator/negative.txt
@@ -0,0 +1 @@
+[INST] Act like a person who is extremely sad. [/INST] \ No newline at end of file
diff --git a/examples/cvector-generator/pca.hpp b/examples/cvector-generator/pca.hpp
new file mode 100644
index 00000000..8b95cec3
--- /dev/null
+++ b/examples/cvector-generator/pca.hpp
@@ -0,0 +1,322 @@
+#include "common.h"
+#include "llama.h"
+#include "ggml.h"
+
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+#ifdef GGML_USE_METAL
+#include "ggml-metal.h"
+#endif
+
+#include <cstdio>
+#include <ctime>
+#include <string>
+#include <tuple>
+#include <vector>
+#include <algorithm>
+#include <iostream>
+#include <fstream>
+
+#define DEBUG_POS 5
+
+static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
+ printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
+ if (!with_data) return;
+ printf("%s: %s[0] = [", __func__, t->name);
+ for (size_t i = 0; i <= DEBUG_POS; i++) {
+ printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
+ }
+ printf(" ... ]\n");
+}
+
+namespace PCA {
+
+// input params for PCA computations
+struct pca_params {
+ int n_threads = 1;
+ int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
+ int n_iterations = 1000;
+ float tolerance = 1e-7;
+
+ // for debugging
+ int i_layer = 0;
+ int n_layers = 0;
+};
+
+// result from each iteration
+struct pca_result {
+ struct ggml_tensor * calculated_square = NULL;
+ std::vector<struct ggml_tensor *> eigenvectors;
+ std::vector<float> distances;
+};
+
+struct pca_model {
+ ggml_backend_t backend = NULL;
+ ggml_backend_buffer_t buffer;
+ struct ggml_context * ctx; // context to compute graph on target device
+ struct ggml_context * ctx_host; // host context to store results
+
+ // tensors on target device
+ struct ggml_tensor * dev_input;
+ struct ggml_tensor * dev_square;
+ struct ggml_tensor * dev_eigenvector;
+
+ pca_model(struct ggml_tensor * t_input) {
+// TODO: enable GPU support when support for GGML_OP_SQRT is added
+// #ifdef GGML_USE_CUDA
+// fprintf(stderr, "%s: using CUDA backend\n", __func__);
+// backend = ggml_backend_cuda_init(0); // init device 0
+// if (!backend) {
+// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
+// }
+// #endif
+
+// #ifdef GGML_USE_METAL
+// fprintf(stderr, "%s: using Metal backend\n", __func__);
+// backend = ggml_backend_metal_init();
+// if (!backend) {
+// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
+// }
+// #endif
+
+ // if there aren't GPU Backends fallback to CPU backend
+ if (!backend) {
+ backend = ggml_backend_cpu_init();
+ }
+
+ const int num_tensors = 4;
+ struct ggml_init_params params {
+ /*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ctx = ggml_init(params);
+
+ auto n_samples = t_input->ne[0];
+ auto n_embd = t_input->ne[1];
+
+ dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
+ dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
+ dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ ggml_set_name(dev_input, "dev_input");
+ ggml_set_name(dev_square, "dev_square");
+ ggml_set_name(dev_eigenvector, "dev_eigenvector");
+ buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
+ ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
+
+ // initialize eigenvector to random normalized vector
+ {
+ std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
+ std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
+ std::uniform_real_distribution<float> distribution(0.0, 1.0);
+ float sum_sqr = 0.0; // for normalizing random_vec
+ for (size_t i = 0; i < random_vec.size(); ++i) {
+ float f = distribution(generator);
+ sum_sqr += f * f;
+ random_vec[i] = f;
+ }
+ // normalize it
+ float random_vec_norm = std::sqrt(sum_sqr);
+ for (size_t i = 0; i < random_vec.size(); ++i) {
+ random_vec[i] /= random_vec_norm;
+ }
+ ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
+ }
+ }
+
+ ~pca_model() {
+ ggml_free(ctx);
+ ggml_backend_buffer_free(buffer);
+ ggml_backend_free(backend);
+ }
+};
+
+static struct ggml_cgraph * build_graph_piter(
+ const struct pca_params & params,
+ const pca_model & model,
+ bool calc_square = false) {
+ GGML_ASSERT(params.n_batch > 0);
+ // TODO: buf_size must be able to scale with params.n_batch
+ static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
+ static std::vector<uint8_t> buf(buf_size);
+
+ struct ggml_init_params params0 = {
+ /*.mem_size =*/ buf_size,
+ /*.mem_buffer =*/ buf.data(),
+ /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
+ };
+ // create a temporally context to build the graph
+ struct ggml_context * ctx0 = ggml_init(params0);
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ // turn v_diff_original into square matrix if needed
+ struct ggml_tensor * tmp_square;
+ if (calc_square) {
+ tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
+ ggml_set_name(tmp_square, "tmp_square");
+ }
+
+ struct ggml_tensor * b_tensor;
+ struct ggml_tensor * distance;
+ struct ggml_tensor * old_eigen = model.dev_eigenvector;
+ struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
+
+ for (int i = 0; i < params.n_batch; ++i) {
+ // b_tensor = square * eigenvector^T
+ b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
+ ggml_set_name(b_tensor, "b_tensor");
+
+ // normalize
+ b_tensor = ggml_div_inplace(ctx0,
+ b_tensor,
+ ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
+ );
+ ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
+
+ // calculate distance(new eigenvector - old eigenvector)
+ // we don't use ggml_sub because it may not be implemented on GPU backend
+ struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
+ distance = ggml_sqrt_inplace(ctx0,
+ ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
+ ggml_format_name(distance, "distance_%d", i);
+
+ old_eigen = b_tensor;
+
+ // build operations nodes
+ ggml_build_forward_expand(gf, distance);
+ }
+
+ // delete the temporally context used to build the graph
+ ggml_free(ctx0);
+ return gf;
+}
+
+static ggml_status compute_piter(
+ const struct pca_params & params,
+ const pca_model & model,
+ struct ggml_cgraph * gf,
+ ggml_gallocr_t allocr,
+ struct pca_result & result) {
+ // allocate tensors
+ ggml_gallocr_alloc_graph(allocr, gf);
+
+ if (ggml_backend_is_cpu(model.backend)) {
+ ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
+ }
+
+// TODO: enable GPU support when support for GGML_OP_SQRT is added
+//#ifdef GGML_USE_METAL
+// if (ggml_backend_is_metal(model.backend)) {
+// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
+// }
+//#endif
+
+ ggml_status res = ggml_backend_graph_compute(model.backend, gf);
+ if (res == GGML_STATUS_SUCCESS) {
+ auto extract_i = [](std::string prefix, std::string str) -> int {
+ int i = -1;
+ if (str.rfind(prefix, 0) == 0) {
+ sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
+ }
+ return i;
+ };
+ result.calculated_square = NULL;
+ result.eigenvectors.clear();
+ result.distances.clear();
+ result.eigenvectors.resize(params.n_batch);
+ result.distances.resize(params.n_batch);
+ // get output nodes
+ for (int i = 0; i < gf->n_nodes; ++i) {
+ auto node = gf->nodes[i];
+ int iter = -1;
+ // find b_tensor (without copying data from device)
+ if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
+ result.eigenvectors[iter] = node;
+ }
+ // find distances, then copy data from device
+ if ((iter = extract_i("distance_", node->name)) > -1) {
+ float d;
+ ggml_backend_tensor_get(node, &d, 0, sizeof(float));
+ result.distances[iter] = d;
+ // std::cout << node->name << " = " << d << "\n";
+ }
+ // find tmp_square if it exists (without copying data from device)
+ if (std::string(node->name) == "tmp_square") {
+ result.calculated_square = node;
+ }
+ }
+ }
+ return res;
+}
+
+static void power_iteration(
+ const struct pca_params & params,
+ struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
+ struct ggml_tensor * output) {
+ //printf("in power iteration\n");
+ struct pca_model model(input);
+
+ ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
+ struct pca_result result;
+ struct ggml_tensor * last_eigenvector = NULL;
+
+ int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
+ for (int iter = 0; iter < n_iters; ++iter) {
+ bool calc_square = (iter == 0); // only need to calculate square for first iteration
+ struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
+ // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
+ compute_piter(params, model, gf, allocr, result);
+
+ for (size_t k = 0; k < result.distances.size(); ++k) {
+ last_eigenvector = result.eigenvectors[k];
+ if (result.distances[k] < params.tolerance) {
+ break; // done
+ }
+ }
+
+ if (calc_square) {
+ // copy and store the square matrix if needed
+ GGML_ASSERT(result.calculated_square != NULL);
+ ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
+ }
+
+ {
+ // copy last eigen vector and store as input for next iteration
+ GGML_ASSERT(last_eigenvector != NULL);
+ ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
+ }
+
+ printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
+ __func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch);
+ }
+
+ // get output tensor
+ GGML_ASSERT(last_eigenvector);
+ ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
+ //print_debug_tensor(output);
+ ggml_gallocr_free(allocr);
+}
+
+static void run_pca(
+ struct pca_params & params,
+ const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
+ const std::vector<struct ggml_tensor *> & v_output) {
+ printf("%s: Running PCA...\n", __func__);
+ for (size_t il = 0; il < v_input.size(); ++il) {
+
+ // prepare output vector
+ struct ggml_tensor * ctrl_out = v_output[il];
+ ggml_format_name(ctrl_out, "direction.%ld", il+1);
+
+ // run power_iteration
+ params.i_layer = il;
+ params.n_layers = v_input.size();
+ power_iteration(params, v_input[il], ctrl_out);
+ printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
+ }
+}
+
+}
diff --git a/examples/cvector-generator/positive.txt b/examples/cvector-generator/positive.txt
new file mode 100644
index 00000000..f28e9aa1
--- /dev/null
+++ b/examples/cvector-generator/positive.txt
@@ -0,0 +1 @@
+[INST] Act like a person who is extremely happy. [/INST] \ No newline at end of file