diff options
author | Iwan Kawrakow <iwan.kawrakow@gmail.com> | 2024-07-18 13:55:51 +0200 |
---|---|---|
committer | Iwan Kawrakow <iwan.kawrakow@gmail.com> | 2024-07-18 13:55:51 +0200 |
commit | 30b8bcf1a3bf232aabcbb826c7a2769dda6eafa0 (patch) | |
tree | 40d4e4eb9274afcef5a751999e82cd7011b1ffe4 | |
parent | 8db01c0804b603cb76bbee82ebb1a144c8d3592e (diff) |
iqk_mul_mat(f16): make it work for row sizes that are multiple of 4 on NEON
Here the performance gain is more modest compared to AVX2: we get
PP-512 = 200 t/s up from 190 t/s for iq1_bn-quantized Bitnet-3B
running on M2 Max.
-rw-r--r-- | iqk_mul_mat.cpp | 18 |
1 files changed, 16 insertions, 2 deletions
diff --git a/iqk_mul_mat.cpp b/iqk_mul_mat.cpp index c902af14..45d7816b 100644 --- a/iqk_mul_mat.cpp +++ b/iqk_mul_mat.cpp @@ -4201,6 +4201,7 @@ struct QF16Base { using Data = float16x8_t; using Acc = float16x8_t; static inline Data load(const __fp16 * x) { return vld1q_f16(x); } + static inline Data load4(const __fp16 * x) { return vcombine_f16(vld1_f16(x), vdup_n_f16(0)); } static inline Acc acc(Acc prev, const Data& y, const Data& x) { return vfmaq_f16(prev, y, x); } @@ -4230,6 +4231,7 @@ template <int nrc> struct QF16 final : public QF16Base { for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const __fp16 *)(cx + iy*bx); } IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); } + IQK_ALWAYS_INLINE Data load_tail(int iy, int i) const { return load4(y[iy] + k_step*i); } const __fp16 * y[nrc_y]; }; @@ -4237,6 +4239,7 @@ template <int nrc_y, int nrc_x> IQK_NOINLINE void mul_mat_f16_f16_NxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) { assert(n%QF16Base::k_step == 0); int nb = n/QF16Base::k_step; + int nb4 = n/4; QF16<nrc_y> y(info); QF16<nrc_x> x(cx + ix0*bx, bx); QF16Base::Data xv[nrc_x]; @@ -4261,12 +4264,23 @@ IQK_NOINLINE void mul_mat_f16_f16_NxN(int n, const char * cx, size_t bx, int ix0 for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]); } } + for (int i = (QF16Base::k_step/4)*nb; i < nb4; ++i) { + yv = y.load_tail(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + xv[ix] = x.load_tail(ix, i); + acc[ix] = QF16Base::acc(acc[ix], yv, xv[ix]); + } + for (int iy = 1; iy < nrc_y; ++iy) { + yv = y.load_tail(iy, i); + for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]); + } + } for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < nrc_x; ++ix) info.store(ix0+ix, iy, QF16Base::hsum(acc[nrc_x*iy+ix])); } template <int nrc_y> void mul_mat_f16_f16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { - GGML_ASSERT(n%QF16Base::k_step == 0); + GGML_ASSERT(n%4 == 0); constexpr int k_nx = 5; const char * cx = (const char *)vx; for (int ix = 0; ix < nrc_x/k_nx; ++ix) { @@ -4525,7 +4539,7 @@ template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { if (typeA == GGML_TYPE_F16 && typeB == GGML_TYPE_F16) { - if (ne00%8) return false; + if (ne00%4) return false; for (auto& f : m.funcs) f = nullptr; m.funcs[0] = mul_mat_f16_f16_T<1>; m.funcs[1] = mul_mat_f16_f16_T<2>; |