summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXiaotaoChen <chenxiaotao1234@gmail.com>2024-01-22 21:09:35 +0800
committerGitHub <noreply@github.com>2024-01-22 15:09:35 +0200
commit3ce7e8f8e7ccfce07e5947ac5f1f3f4628cf68ea (patch)
tree75c5f7d2eb2e6df853fe1fa8cb7119f3178a59a3
parentb2d80e105a59b54822edf7ce7f3ed5f317e96e21 (diff)
llava : MobileVLM support (#4954)
* MobileVLM native implementation * delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake * move android script to example/llava directory * Fix the editor config checks --------- Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
-rw-r--r--CMakeLists.txt7
-rw-r--r--examples/llava/MobileVLM-README.md131
-rwxr-xr-xexamples/llava/android/adb_run.sh53
-rwxr-xr-xexamples/llava/android/build_64.sh8
-rw-r--r--examples/llava/clip.cpp391
-rw-r--r--examples/llava/convert-image-encoder-to-gguf.py6
-rw-r--r--ggml.c141
-rw-r--r--ggml.h24
8 files changed, 737 insertions, 24 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 6b3b1396..5a333ff5 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -108,6 +108,13 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STA
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
+
+# add perf arguments
+option(LLAMA_PERF "llama: enable perf" OFF)
+if (LLAMA_PERF)
+ add_definitions(-DGGML_PERF)
+endif()
+
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md
new file mode 100644
index 00000000..c6258eba
--- /dev/null
+++ b/examples/llava/MobileVLM-README.md
@@ -0,0 +1,131 @@
+# MobileVLM
+
+Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants.
+
+for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)
+
+The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
+
+## Usage
+Build with cmake or run `make llava-cli` to build it.
+
+After building, run: `./llava-cli` to see the usage. For example:
+
+```sh
+./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \
+ --mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \
+ --image path/to/an/image.jpg \
+ -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:"
+```
+
+## Model conversion
+
+- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally:
+
+```sh
+git clone https://huggingface.co/mtgv/MobileVLM-1.7B
+
+git clone https://huggingface.co/openai/clip-vit-large-patch14-336
+```
+
+2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
+
+```sh
+python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
+```
+
+3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF:
+
+```sh
+python ./examples/llava/convert-image-encoder-to-gguf \
+ -m path/to/clip-vit-large-patch14-336 \
+ --llava-projector path/to/MobileVLM-1.7B/llava.projector \
+ --output-dir path/to/MobileVLM-1.7B \
+ --projector-type ldp
+```
+
+4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
+
+```sh
+python ./convert.py path/to/MobileVLM-1.7B
+```
+
+5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
+```sh
+./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
+```
+
+Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
+
+## Android compile and run
+### compile
+refer to `examples/llava/android/build_64.sh`
+```sh
+mkdir examples/llava/android/build_64
+cd examples/llava/android/build_64
+../build_64.sh
+```
+### run on Android
+refer to `android/adb_run.sh`, modify resources' `name` and `path`
+
+## some result on Android with `Snapdragon 888` chip
+### case 1
+**input**
+```sh
+/data/local/tmp/llava-cli \
+ -m /data/local/tmp/ggml-model-q4_k.gguf \
+ --mmproj /data/local/tmp/mmproj-model-f16.gguf \
+ -t 4 \
+ --image /data/local/tmp/demo.jpg \
+ -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
+```
+**output**
+```sh
+encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch)
+ Susan Wise Bauer
+llama_print_timings: load time = 23574.72 ms
+llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second)
+llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second)
+llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second)
+llama_print_timings: total time = 34731.93 ms
+```
+### case 2
+**input**
+```sh
+/data/local/tmp/llava-cli \
+ -m /data/local/tmp/ggml-model-q4_k.gguf \
+ --mmproj /data/local/tmp/mmproj-model-f16.gguf \
+ -t 4 \
+ --image /data/local/tmp/cat.jpeg \
+ -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
+```
+
+**output**
+```sh
+encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
+ The image depicts a cat sitting in the grass near some tall green plants.
+llama_print_timings: load time = 23257.32 ms
+llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second)
+llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second)
+llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second)
+llama_print_timings: total time = 34570.79 ms
+```
+
+## Minor shortcomings
+The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
+
+## TODO
+
+- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
+- [ ] Optimize LDP projector performance
+
+ - Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
+ - Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
+- [ ] run MobileVLM on `Jetson Orin`
+- [ ] Support more model variants, such as `MobileVLM-3B`.
+
+
+## contributor
+```sh
+zhangjidong05, yangyang260, huyiming03, chenxiaotao03
+```
diff --git a/examples/llava/android/adb_run.sh b/examples/llava/android/adb_run.sh
new file mode 100755
index 00000000..f73623ae
--- /dev/null
+++ b/examples/llava/android/adb_run.sh
@@ -0,0 +1,53 @@
+#!/bin/bash
+
+model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
+projector_name="mmproj-model-f16.gguf"
+llama_name="ggml-model-q4_k.gguf"
+img_dir="/Users/cxt/model/llm"
+img_name="demo.jpg"
+prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
+# img_name="cat.jpeg"
+# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
+
+program_dir="build_64/bin"
+binName="llava-cli"
+n_threads=4
+
+
+deviceDir="/data/local/tmp"
+saveDir="output"
+if [ ! -d ${saveDir} ]; then
+ mkdir ${saveDir}
+fi
+
+
+function android_run() {
+ # # copy resource into device
+ # adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
+ # adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
+ adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
+ # copy program into device
+ adb push ${program_dir}/${binName} ${deviceDir}/${binName}
+ adb shell "chmod 0777 ${deviceDir}/${binName}"
+
+ # run
+ adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
+ -m ${deviceDir}/${llama_name} \
+ --mmproj ${deviceDir}/${projector_name} \
+ -t ${n_threads} \
+ --image ${deviceDir}/${img_name} \
+ -p \"${prompt}\" \
+ > ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
+ adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
+ -m ${deviceDir}/${llama_name} \
+ --mmproj ${deviceDir}/${projector_name} \
+ -t ${n_threads} \
+ --image ${deviceDir}/${img_name} \
+ -p \"${prompt}\" \
+ >> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
+ adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
+}
+
+android_run
+
+echo "android_run is Done!"
diff --git a/examples/llava/android/build_64.sh b/examples/llava/android/build_64.sh
new file mode 100755
index 00000000..71b6fd3f
--- /dev/null
+++ b/examples/llava/android/build_64.sh
@@ -0,0 +1,8 @@
+#!/bin/bash
+cmake ../../../../ \
+-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
+-DCMAKE_BUILD_TYPE=Release \
+-DANDROID_ABI="arm64-v8a" \
+-DANDROID_PLATFORM=android-23 $1
+
+make -j4
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 2ae8853d..6161fd85 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -12,6 +12,7 @@
#include <regex>
#include <stdexcept>
#include <vector>
+#include <sstream>
#include "clip.h"
#include "ggml.h"
@@ -67,6 +68,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
+#define KEY_PROJ_TYPE "clip.projector_type"
//
// tensor name constants
@@ -89,6 +91,21 @@ static std::string format(const char * fmt, ...) {
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
+#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
+#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
+
+
+enum projector_type {
+ PROJECTOR_TYPE_MLP,
+ PROJECTOR_TYPE_LDP,
+ PROJECTOR_TYPE_UNKNOWN,
+};
+
+static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
+ { PROJECTOR_TYPE_MLP, "mlp" },
+ { PROJECTOR_TYPE_LDP, "ldp" },
+};
+
//
// utilities to get data from a gguf file
@@ -129,6 +146,91 @@ static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype));
}
+static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
+ switch (type) {
+ case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
+ case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
+ case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
+ case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
+ case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
+ case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
+ case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
+ case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
+ case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
+ case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
+ case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
+ default: return format("unknown type %d", type);
+ }
+}
+
+
+static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
+ std::string result;
+ for (size_t pos = 0; ; pos += search.length()) {
+ auto new_pos = s.find(search, pos);
+ if (new_pos == std::string::npos) {
+ result += s.substr(pos, s.size() - pos);
+ break;
+ }
+ result += s.substr(pos, new_pos - pos) + replace;
+ pos = new_pos;
+ }
+ s = std::move(result);
+}
+
+static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
+ const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
+
+ switch (type) {
+ case GGUF_TYPE_STRING:
+ return gguf_get_val_str(ctx_gguf, i);
+ case GGUF_TYPE_ARRAY:
+ {
+ const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
+ int arr_n = gguf_get_arr_n(ctx_gguf, i);
+ const void * data = gguf_get_arr_data(ctx_gguf, i);
+ std::stringstream ss;
+ ss << "[";
+ for (int j = 0; j < arr_n; j++) {
+ if (arr_type == GGUF_TYPE_STRING) {
+ std::string val = gguf_get_arr_str(ctx_gguf, i, j);
+ // escape quotes
+ replace_all(val, "\\", "\\\\");
+ replace_all(val, "\"", "\\\"");
+ ss << '"' << val << '"';
+ } else if (arr_type == GGUF_TYPE_ARRAY) {
+ ss << "???";
+ } else {
+ ss << gguf_data_to_str(arr_type, data, j);
+ }
+ if (j < arr_n - 1) {
+ ss << ", ";
+ }
+ }
+ ss << "]";
+ return ss.str();
+ }
+ default:
+ return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
+ }
+}
+
+static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
+ size_t tensor_size = ggml_nbytes(tensor);
+ printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%d, %d, %d, %d], type: %d\n",
+ prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
+ tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->type);
+}
+
+static projector_type clip_projector_type_from_string(const std::string & name) {
+ for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
+ if (kv.second == name) {
+ return kv.first;
+ }
+ }
+ return PROJECTOR_TYPE_UNKNOWN;
+}
+
//
// image data
//
@@ -205,6 +307,32 @@ struct clip_vision_model {
struct ggml_tensor * mm_0_b;
struct ggml_tensor * mm_2_w;
struct ggml_tensor * mm_2_b;
+
+ // MobileVLM projection
+ struct ggml_tensor * mm_model_mlp_1_w;
+ struct ggml_tensor * mm_model_mlp_1_b;
+ struct ggml_tensor * mm_model_mlp_3_w;
+ struct ggml_tensor * mm_model_mlp_3_b;
+ struct ggml_tensor * mm_model_block_1_block_0_0_w;
+ struct ggml_tensor * mm_model_block_1_block_0_1_w;
+ struct ggml_tensor * mm_model_block_1_block_0_1_b;
+ struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
+ struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
+ struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
+ struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
+ struct ggml_tensor * mm_model_block_1_block_2_0_w;
+ struct ggml_tensor * mm_model_block_1_block_2_1_w;
+ struct ggml_tensor * mm_model_block_1_block_2_1_b;
+ struct ggml_tensor * mm_model_block_2_block_0_0_w;
+ struct ggml_tensor * mm_model_block_2_block_0_1_w;
+ struct ggml_tensor * mm_model_block_2_block_0_1_b;
+ struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
+ struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
+ struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
+ struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
+ struct ggml_tensor * mm_model_block_2_block_2_0_w;
+ struct ggml_tensor * mm_model_block_2_block_2_1_w;
+ struct ggml_tensor * mm_model_block_2_block_2_1_b;
};
struct clip_ctx {
@@ -213,6 +341,7 @@ struct clip_ctx {
bool has_llava_projector = false;
struct clip_vision_model vision_model;
+ projector_type proj_type = PROJECTOR_TYPE_MLP;
float image_mean[3];
float image_std[3];
@@ -430,16 +559,135 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
free(patches_data);
}
+ // shape [1, 576, 1024]
+ // ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // mm projection 0
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+ // print_tensor_info(embeddings, "embeddings");
+
+ // llava projector
+ if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
+ embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+
+ embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_gelu(ctx0, embeddings);
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
+ else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
+ // MobileVLM projector
+ int n_patch = 24;
+ struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
+ mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
+ mlp_1 = ggml_gelu(ctx0, mlp_1);
+ struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
+ mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
+ // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
+
+ // block 1
+ struct ggml_tensor * block_1 = nullptr;
+ {
+ // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
+ mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
+ mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
+ // stride = 1, padding = 1, bias is nullptr
+ block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, nullptr, 1, 1, 1, 1, 1, 1);
+
+ // layer norm
+ // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+ // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+
+ // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ // hardswish
+ struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+ block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+ // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ // pointwise conv
+ block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
+ block_1 = ggml_relu(ctx0, block_1);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
+ block_1 = ggml_hardsigmoid(ctx0, block_1);
+ // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
+ block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+ block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+ int w = block_1->ne[0], h = block_1->ne[1];
+ block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+
+ // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
+ block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+ // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+ // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ // residual
+ block_1 = ggml_add(ctx0, mlp_3, block_1);
+ }
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ // block_2
+ {
+ // stride = 2
+ block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, nullptr, 2, 2, 1, 1, 1, 1);
+
+ // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+ // layer norm
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+ // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+ // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+ // hardswish
+ struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+ // not sure the parameters is right for globalAvgPooling
+ block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+ // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ // pointwise conv
+ block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
+ block_1 = ggml_relu(ctx0, block_1);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
+ block_1 = ggml_hardsigmoid(ctx0, block_1);
+
+ // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+ block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+ int w = block_1->ne[0], h = block_1->ne[1];
+ block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+ // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
+ block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+
+ // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
+ block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
+ // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
+ }
+ embeddings = block_1;
+ }
+ else {
+ GGML_ASSERT(false);
+ }
}
// build the graph
@@ -485,16 +733,55 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("\n");
}
const int n_tensors = gguf_get_n_tensors(ctx);
+
// kv
- if (verbosity >= 3) {
- const int n_kv = gguf_get_n_kv(ctx);
+ const int n_kv = gguf_get_n_kv(ctx);
+ printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
+ __func__, n_kv, n_tensors, fname);
+ {
+ std::map<enum ggml_type, uint32_t> n_type;
+
+ uint32_t n_type_max = 0;
+ enum ggml_type type_max = GGML_TYPE_F32;
- for (int i = 0; i < n_kv; ++i) {
- const char * key = gguf_get_key(ctx, i);
+ for (int i = 0; i < n_tensors; i++) {
+ enum ggml_type type = gguf_get_tensor_type(ctx, i);
- printf("%s: kv[%d]: key = %s\n", __func__, i, key);
+ n_type[type]++;
+
+ if (n_type_max < n_type[type]) {
+ n_type_max = n_type[type];
+ type_max = type;
+ }
+ }
+
+ printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
+ for (int i = 0; i < n_kv; i++) {
+ const char * name = gguf_get_key(ctx, i);
+ const enum gguf_type type = gguf_get_kv_type(ctx, i);
+ const std::string type_name =
+ type == GGUF_TYPE_ARRAY
+ ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
+ : gguf_type_name(type);
+
+ std::string value = gguf_kv_to_str(ctx, i);
+ const size_t MAX_VALUE_LEN = 40;
+ if (value.size() > MAX_VALUE_LEN) {
+ value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
+ }
+ replace_all(value, "\n", "\\n");
+
+ printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
+ }
+
+ // print type counts
+ for (auto & kv : n_type) {
+ if (kv.second == 0) {
+ continue;
+ }
+
+ printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
- printf("\n");
}
// data
@@ -503,20 +790,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
+ enum ggml_type type = gguf_get_tensor_type(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
buffer_size += tensor_size;
if (verbosity >= 3) {
- printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i,
- ggml_n_dims(cur), cur->name, tensor_size, offset);
+ printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%d, %d, %d, %d], type: %d\n", __func__, i,
+ ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], type);
}
}
}
+
+
buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx;
+ // update projector type
+ {
+ int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
+ if (idx != -1) {
+ const std::string proj_type = gguf_get_val_str(ctx, idx);
+ new_clip->proj_type = clip_projector_type_from_string(proj_type);
+ }
+ else {
+ new_clip->proj_type = PROJECTOR_TYPE_MLP;
+ }
+ }
+
#ifdef GGML_USE_CUBLAS
new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__);
@@ -661,10 +963,45 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
- vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
- vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
+
+ // LLaVA projection
+ if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
+ vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
+ vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
+ vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
+ vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
+ }
+ else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
+ // MobileVLM projection
+ vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
+ vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
+ vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
+ vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
+ vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
+ vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
+ vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
+ vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
+ vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
+ vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
+ vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
+ vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
+ vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
+ vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
+ vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
+ vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
+ vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
+ vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
+ vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
+ vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
+ vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
+ vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
+ vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
+ vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
+ }
+ else {
+ std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
+ throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
+ }
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
@@ -1100,13 +1437,25 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- return ctx->vision_model.mm_2_b->ne[0];
+ if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
+ return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
+ }
+ else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
+ return ctx->vision_model.mm_2_b->ne[0];
+ }
+ else {
+ std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
+ throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
+ }
}
int clip_n_patches(const struct clip_ctx * ctx) {
auto & params = ctx->vision_model.hparams;
-
- return (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
+ int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
+ if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
+ n_patches /= 4;
+ }
+ return n_patches;
}
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py
index 03688e0e..f5a3c9b4 100644
--- a/examples/llava/convert-image-encoder-to-gguf.py
+++ b/examples/llava/convert-image-encoder-to-gguf.py
@@ -81,6 +81,7 @@ ap.add_argument("--vision-only", action="store_true", required=False,
ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
+ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
@@ -174,6 +175,8 @@ elif args.vision_only and not has_llava_projector:
fout.add_description("vision-only CLIP model")
elif has_llava_projector:
fout.add_description("image encoder for LLaVA")
+ # add projector type
+ fout.add_string("clip.projector_type", args.projector_type)
else:
fout.add_description("two-tower CLIP model")
@@ -218,7 +221,8 @@ if has_llava_projector:
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
- if data.ndim == 2:
+ # pw and dw conv ndim==4
+ if data.ndim == 2 or data.ndim == 4:
data = data.squeeze().numpy().astype(np.float16)
else:
data = data.squeeze().numpy().astype(np.float32)
diff --git a/ggml.c b/ggml.c
index cbf2d4bd..a7a88e38 100644
--- a/ggml.c
+++ b/ggml.c
@@ -1418,6 +1418,9 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) {
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
+// TODO: optimize performance
+inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
+inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
@@ -1776,9 +1779,11 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"GELU",
"GELU_QUICK",
"SILU",
+ "HARDSWISH",
+ "HARDSIGMOID",
};
-static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
+static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@@ -3945,6 +3950,20 @@ struct ggml_tensor * ggml_silu_back(
return result;
}
+// ggml hardswish
+struct ggml_tensor * ggml_hardswish(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
+}
+
+// ggml hardsigmoid
+struct ggml_tensor * ggml_hardsigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
+}
+
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
@@ -5344,6 +5363,33 @@ GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
return result;
}
+// ggml_conv_depthwise
+struct ggml_tensor * ggml_conv_depthwise_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1) {
+
+ struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
+ struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
+ ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
+ s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
+
+ struct ggml_tensor * result =
+ ggml_mul_mat(ctx,
+ ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
+ ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
+
+ result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
+
+ return result;
+}
// ggml_conv_2d
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
@@ -9333,6 +9379,87 @@ static void ggml_compute_forward_silu_back(
}
}
+
+static void ggml_compute_forward_hardswish_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_hardswish_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+static void ggml_compute_forward_hardswish(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_hardswish_f32(params, src0, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+static void ggml_compute_forward_hardsigmoid_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_hardsigmoid_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_hardsigmoid(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
@@ -12349,6 +12476,7 @@ static void ggml_compute_forward_im2col(
}
}
+
// ggml_compute_forward_conv_transpose_2d
static void ggml_compute_forward_conv_transpose_2d(
@@ -13917,6 +14045,14 @@ static void ggml_compute_forward_unary(
{
ggml_compute_forward_silu(params, src0, dst);
} break;
+ case GGML_UNARY_OP_HARDSWISH:
+ {
+ ggml_compute_forward_hardswish(params, src0, dst);
+ } break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ {
+ ggml_compute_forward_hardsigmoid(params, src0, dst);
+ } break;
default:
{
GGML_ASSERT(false);
@@ -16330,6 +16466,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
+ case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
{
n_tasks = 1;
} break;
@@ -16562,7 +16700,6 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
// distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
-
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
diff --git a/ggml.h b/ggml.h
index de8162b8..dca7bd9c 100644
--- a/ggml.h
+++ b/ggml.h
@@ -489,6 +489,8 @@ extern "C" {
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
+ GGML_UNARY_OP_HARDSWISH,
+ GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_COUNT,
};
@@ -1032,6 +1034,16 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
+ // hardswish(x) = x * relu6(x + 3) / 6
+ GGML_API struct ggml_tensor * ggml_hardswish(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ // hardsigmoid(x) = relu6(x + 3) / 6
+ GGML_API struct ggml_tensor * ggml_hardsigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
@@ -1483,6 +1495,18 @@ extern "C" {
int d1,
bool is_2D);
+ GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1);
+
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,