diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-05-15 16:02:39 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-05-15 16:02:39 +0300 |
commit | 3d92d7f802b332927669f01bfa51ebbb56e868ba (patch) | |
tree | c3913f67e36492c723cc47fe512078ee0dd19d59 | |
parent | 3f8c865b920df844ba0cb4ba53c1ccce8874b045 (diff) |
Adding IQ5_KS - 5.25 bpw quants (#422)
* iq5_ks: basics
* iq5_ks: quantize
* iq5_ks: CUDA dequantize works
* iq5_ks: dot product works on CUDA
* iq5_ks: MMQ works
* iq5_ks: Zen4
* iq5_ks: AVX2
But is is not quite right, just like iq4_k, iq5_k, iq6_k, iq4_ks.
All these need fixing on AVX2.
* iq5_ks: NEON
* iq5_ks: Metal dequantize
* iq5_ks: Metal dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
-rw-r--r-- | examples/quantize/quantize.cpp | 1 | ||||
-rw-r--r-- | ggml/include/ggml.h | 2 | ||||
-rw-r--r-- | ggml/src/ggml-common.h | 7 | ||||
-rw-r--r-- | ggml/src/ggml-cuda.cu | 1 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/common.cuh | 7 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/convert.cu | 54 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cu | 41 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cuh | 5 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/mmq.cu | 4 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/mmq.cuh | 73 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/mmvq.cu | 3 | ||||
-rw-r--r-- | ggml/src/ggml-metal.m | 38 | ||||
-rw-r--r-- | ggml/src/ggml-metal.metal | 164 | ||||
-rw-r--r-- | ggml/src/ggml-quants.c | 1 | ||||
-rw-r--r-- | ggml/src/ggml.c | 22 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 172 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 244 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.h | 6 | ||||
-rw-r--r-- | include/llama.h | 3 | ||||
-rw-r--r-- | src/llama.cpp | 6 |
20 files changed, 848 insertions, 6 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 60cf260c..1b388a73 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -68,6 +68,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = { { "IQ4_KS", LLAMA_FTYPE_MOSTLY_IQ4_KS, " 4.25 bpw non-linear quantization", }, { "IQ4_KS_R4",LLAMA_FTYPE_MOSTLY_IQ4_KS_R4,"IQ4_KS repacked", }, { "IQ4_KSS", LLAMA_FTYPE_MOSTLY_IQ4_KSS, " 4.0 bpw non-linear quantization", }, + { "IQ5_KS", LLAMA_FTYPE_MOSTLY_IQ5_KS, " 5.25 bpw non-linear quantization", }, { "IQ2_K", LLAMA_FTYPE_MOSTLY_IQ2_K, " 2.375 bpw non-linear quantization",}, { "IQ2_K_R4", LLAMA_FTYPE_MOSTLY_IQ2_K_R4, "IQ2_K repacked",}, { "IQ2_KS", LLAMA_FTYPE_MOSTLY_IQ2_KS, " 2.1875 bpw non-linear quantization",}, diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index beeb3c09..b6f461ed 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -425,6 +425,7 @@ extern "C" { GGML_TYPE_Q8_KR8 = 149, GGML_TYPE_Q8_K128 = 150, GGML_TYPE_Q8_KV = 151, + GGML_TYPE_IQ5_KS = 152, GGML_TYPE_Q4_0_R8 = 202, GGML_TYPE_Q5_0_R4 = 206, @@ -512,6 +513,7 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_KS = 138, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_KSS = 139, // except 1d tensors GGML_FTYPE_MOSTLY_Q8_KV = 140, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ5_KS = 141, // except 1d tensors // GGML_FTYPE_MOSTLY_Q4_0_R8 = 202, // except 1d tensors GGML_FTYPE_MOSTLY_Q8_0_R8 = 207, // except 1d tensors diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 5a6417fc..1c2d1b17 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -687,6 +687,13 @@ typedef struct { } block_iq6_k; static_assert(sizeof(block_iq6_k) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/2 + QK_K/4 + QK_K/16, "wrong iq6_k block size/padding"); +typedef struct { + uint8_t scales[QK_K/32]; + uint8_t qs[QK_K/2]; + uint8_t qh[QK_K/8]; +} block_iq5_ks; +static_assert(sizeof(block_iq5_ks) == QK_K/32 + QK_K/2 + QK_K/8, "wrong iq5_ks block size/padding"); + #endif // GGML_COMMON_DECL #endif // GGML_COMMON_DECL diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 8a201352..cf17cbc1 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -3451,6 +3451,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 0a7f7f83..a04a1929 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -600,6 +600,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ5_K> { }; template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ5_KS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR5_XS; + static constexpr int qi = QI5_XS; +}; + +template<> struct ggml_cuda_type_traits<GGML_TYPE_IQ6_K> { static constexpr int qk = QK_K; static constexpr int qr = QR6_XS; diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index 8383f2d3..5afe8c74 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -696,6 +696,46 @@ static __global__ void dequantize_block_iq5_k(const void * __restrict__ vx, dst_ } } + +template<typename dst_t> +static __global__ void dequantize_block_iq5_ks(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t n_per_row, int64_t row_size) { + + int64_t ii = blockIdx.x; + int64_t row = (QK_K * ii) / n_per_row; + const char * cx = (const char *)vx + row * row_size; + float d = *(const float *)cx; + const block_iq5_ks * x = (const block_iq5_ks *)(cx + sizeof(float)); + const int64_t i = ii - (row*n_per_row)/QK_K; + + const int tid = threadIdx.x; + int ib64 = tid/8; // 0...3 + int il = tid%8; // 0...7 + dst_t * y = yy + ii*QK_K + 64*ib64 + 2*il; + const float dl1 = d * ((int)(x[i].scales[2*ib64+0] & 254) - 127); + const float dl2 = d * ((int)(x[i].scales[2*ib64+1] & 254) - 127); + const uint8_t * qs = x[i].qs + 32*ib64 + 2*il; + const uint8_t * qh = x[i].qh + 2*il; + auto values1 = iq5nl_values + ((x[i].scales[2*ib64+0] & 1) << 5); + auto values2 = iq5nl_values + ((x[i].scales[2*ib64+1] & 1) << 5); + if constexpr (std::is_same_v<dst_t, nv_bfloat16>) { + for (int j = 0; j < 2; ++j) { + const uint8_t h1 = qh[j] >> 2*(ib64%4), h2 = qh[j+16] >> 2*(ib64%4); + y[j+ 0] = __float2bfloat16(dl1 * values1[(qs[j+ 0] & 0xf) | ((h1 & 1) << 4)]); + y[j+16] = __float2bfloat16(dl1 * values1[(qs[j+16] & 0xf) | ((h2 & 1) << 4)]); + y[j+32] = __float2bfloat16(dl2 * values2[(qs[j+ 0] >> 4) | ((h1 & 2) << 3)]); + y[j+48] = __float2bfloat16(dl2 * values2[(qs[j+16] >> 4) | ((h2 & 2) << 3)]); + } + } else { + for (int j = 0; j < 2; ++j) { + const uint8_t h1 = qh[j] >> 2*(ib64%4), h2 = qh[j+16] >> 2*(ib64%4); + y[j+ 0] = dl1 * values1[(qs[j+ 0] & 0xf) | ((h1 & 1) << 4)]; + y[j+16] = dl1 * values1[(qs[j+16] & 0xf) | ((h2 & 1) << 4)]; + y[j+32] = dl2 * values2[(qs[j+ 0] >> 4) | ((h1 & 2) << 3)]; + y[j+48] = dl2 * values2[(qs[j+16] >> 4) | ((h2 & 2) << 3)]; + } + } +} + template<typename dst_t> static __global__ void dequantize_block_iq6_k(const void * __restrict__ vx, dst_t * __restrict__ yy) { @@ -1009,6 +1049,14 @@ static void dequantize_row_iq4_ks_cuda(const void * vx, dst_t * y, const int64_t } template<typename dst_t> +static void dequantize_row_iq5_ks_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { + const int64_t k = nrows * n_per_row; + const int64_t row_size = ggml_row_size(GGML_TYPE_IQ5_KS, n_per_row); + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq5_ks<<<nb, 32, 0, stream>>>(vx, y, n_per_row, row_size); +} + +template<typename dst_t> static void dequantize_row_iq4_kss_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { const int64_t k = nrows * n_per_row; const int64_t row_size = ggml_row_size(GGML_TYPE_IQ4_KSS, n_per_row); @@ -1140,6 +1188,8 @@ to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) { return dequantize_row_iq4_kss_cuda<nv_bfloat16>; case GGML_TYPE_IQ4_KS: return dequantize_row_iq4_ks_cuda<nv_bfloat16>; + case GGML_TYPE_IQ5_KS: + return dequantize_row_iq5_ks_cuda<nv_bfloat16>; case GGML_TYPE_IQ4_K: return dequantize_row_iq4_k_cuda<nv_bfloat16>; case GGML_TYPE_IQ5_K: @@ -1202,6 +1252,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { return dequantize_row_iq4_ks_cuda; case GGML_TYPE_IQ4_KSS: return dequantize_row_iq4_kss_cuda; + case GGML_TYPE_IQ5_KS: + return dequantize_row_iq5_ks_cuda; case GGML_TYPE_IQ2_KS: return dequantize_row_iq2_ks_cuda; case GGML_TYPE_IQ2_K: @@ -1273,6 +1325,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq4_ks_cuda; case GGML_TYPE_IQ4_KSS: return dequantize_row_iq4_kss_cuda; + case GGML_TYPE_IQ5_KS: + return dequantize_row_iq5_ks_cuda; case GGML_TYPE_IQ2_KS: return dequantize_row_iq2_ks_cuda; case GGML_TYPE_IQ2_K: diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cu b/ggml/src/ggml-cuda/iqk_mmvq.cu index 576c387d..6a2db725 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cu +++ b/ggml/src/ggml-cuda/iqk_mmvq.cu @@ -328,6 +328,39 @@ __device__ __forceinline__ float vec_dot_iq5_k_q8_1( return d5 * (__low2float(bq8_1[2*(i4/2)+0].ds) * sumi1 * ls1 + __low2float(bq8_1[2*(i4/2)+1].ds) * sumi2 * ls2); } +__device__ __forceinline__ float vec_dot_iq5_ks_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { + + float scale = *(const float *)vbq; + const block_iq5_ks * bq5 = (const block_iq5_ks *)((const char *)vbq + sizeof(float)) + kbx; + const uint8_t * all_values = (const uint8_t *)iq5nl_values; + + int i4 = iqs/4; // 0...7. Blocks of 16 index is 4*(i4/2) + (i4%2) + (0 and 2) + + const int32_t * q8_1 = (const int *)bq8_1[2*(i4/2)+0].qs + 4*(i4%2); + const int32_t * q8_2 = (const int *)bq8_1[2*(i4/2)+1].qs + 4*(i4%2); + const uint32_t * q4 = (const uint32_t *)bq5->qs + 8*(i4/2) + 4*(i4%2); + const uint32_t * qh = (const uint32_t *)bq5->qh + 4*(i4%2); + const uint8_t * values1 = all_values + ((bq5->scales[2*(i4/2)+0] & 1) << 5); + const uint8_t * values2 = all_values + ((bq5->scales[2*(i4/2)+1] & 1) << 5); + uint32_t aux32[2]; + const uint8_t * a8 = (const uint8_t *)aux32; + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 4; ++j) { + uint32_t h = qh[j] >> 2*(i4/2); + aux32[0] = ((q4[j] >> 0) & 0x0f0f0f0f) | ((h << 4) & 0x10101010); + aux32[1] = ((q4[j] >> 4) & 0x0f0f0f0f) | ((h << 3) & 0x10101010); + v1 = int_from_table(a8+0, values1); + v2 = int_from_table(a8+4, values2); + sumi1 = ggml_cuda_dp4a(v1, q8_1[j], sumi1); + sumi2 = ggml_cuda_dp4a(v2, q8_2[j], sumi2); + } + const int ls1 = (bq5->scales[2*(i4/2)+0] & 254) - 127; + const int ls2 = (bq5->scales[2*(i4/2)+1] & 254) - 127; + return scale * (__low2float(bq8_1[2*(i4/2)+0].ds) * sumi1 * ls1 + __low2float(bq8_1[2*(i4/2)+1].ds) * sumi2 * ls2); +} + #define VDR_IQ6_K_Q8_1_MMVQ 4 #define VDR_IQ6_K_Q8_1_MMQ 4 @@ -799,6 +832,14 @@ void mul_mat_vec_iq5_k_q8_1_cuda( iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ5_K, VDR_IQ5_K_Q8_1_MMVQ, vec_dot_iq5_k_q8_1>(vx, vy, dst, ids_data, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream); } +void mul_mat_vec_iq5_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, const char * ids_data, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, + const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, int64_t ids_nb0, cudaStream_t stream) { + + iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ5_KS, VDR_IQ5_K_Q8_1_MMVQ, vec_dot_iq5_ks_q8_1>(vx, vy, dst, ids_data, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream); +} + void mul_mat_vec_iq6_k_q8_1_cuda( const void * vx, const void * vy, float * dst, const char * ids_data, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cuh b/ggml/src/ggml-cuda/iqk_mmvq.cuh index 1f55ddb9..b81d2114 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cuh +++ b/ggml/src/ggml-cuda/iqk_mmvq.cuh @@ -26,6 +26,11 @@ void mul_mat_vec_iq5_k_q8_1_cuda( const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, const int64_t ids_nb0, cudaStream_t stream); +void mul_mat_vec_iq5_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, const char * ids_data, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, + const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, const int64_t ids_nb0, cudaStream_t stream); + void mul_mat_vec_iq6_k_q8_1_cuda( const void * vx, const void * vy, float * dst, const char * ids_data, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu index 7bee10cb..2f7a9bfd 100644 --- a/ggml/src/ggml-cuda/mmq.cu +++ b/ggml/src/ggml-cuda/mmq.cu @@ -94,6 +94,9 @@ void ggml_cuda_op_mul_mat_q( case GGML_TYPE_IQ4_KS: mul_mat_q_case<GGML_TYPE_IQ4_KS>(ctx, args, stream); break; + case GGML_TYPE_IQ5_KS: + mul_mat_q_case<GGML_TYPE_IQ5_KS>(ctx, args, stream); + break; case GGML_TYPE_IQ2_KS: mul_mat_q_case<GGML_TYPE_IQ2_KS>(ctx, args, stream); break; @@ -150,6 +153,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_KS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh index 1da9a67a..72fa9f13 100644 --- a/ggml/src/ggml-cuda/mmq.cuh +++ b/ggml/src/ggml-cuda/mmq.cuh @@ -88,6 +88,7 @@ static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) { case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ6_K: return MMQ_Q8_1_DS_LAYOUT_D4; default: @@ -187,6 +188,7 @@ static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml case GGML_TYPE_IQ4_XS : return MMQ_DP4A_TXS_Q8_0; case GGML_TYPE_IQ4_NL : return MMQ_DP4A_TXS_Q8_0; case GGML_TYPE_IQ4_KS : return MMQ_DP4A_TXS_Q8_0; + case GGML_TYPE_IQ5_KS : return MMQ_DP4A_TXS_Q8_0; case GGML_TYPE_IQ2_KS : return MMQ_DP4A_TXS_Q8_0; case GGML_TYPE_IQ2_K : return MMQ_DP4A_TXS_Q8_0_16; case GGML_TYPE_IQ3_K : return MMQ_DP4A_TXS_Q8_0_16; @@ -231,6 +233,7 @@ static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) { case GGML_TYPE_IQ4_XS : return MMQ_MMA_TILE_X_K_Q8_0; case GGML_TYPE_IQ4_NL : return MMQ_MMA_TILE_X_K_Q8_0; case GGML_TYPE_IQ4_KS : return MMQ_MMA_TILE_X_K_Q8_0; + case GGML_TYPE_IQ5_KS : return MMQ_MMA_TILE_X_K_Q8_0; case GGML_TYPE_IQ2_KS : return MMQ_MMA_TILE_X_K_Q8_0; case GGML_TYPE_IQ2_K : return MMQ_MMA_TILE_X_K_Q3_K; case GGML_TYPE_IQ3_K : return MMQ_MMA_TILE_X_K_Q3_K; @@ -2794,6 +2797,67 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin } } +template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq5_ks( + const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { + +#ifdef INT8_MMA_AVAILABLE + int * x_qs = (int *) x_tile; + float * x_df = (float *) (x_qs + WARP_SIZE*2); +#else + constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ5_KS, mmq_y); + int * x_qs = (int *) x_tile; + float * x_df = (float *) (x_qs + txs.qs); +#endif // INT8_MMA_AVAILABLE + + constexpr int qstep = 8; + const int kqsx = threadIdx.x % qstep; + + auto values = iq5nl_values; + + uint32_t aux32[2]; + const uint8_t * aux8 = (const uint8_t *)aux32; +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/qstep) { + int i = i0 + threadIdx.y*(WARP_SIZE/qstep) + threadIdx.x/qstep; + + if (need_check) { + i = min(i, i_max); + } + + const float * dptr = (const float *)(x + i*stride); + const float d = dptr[0]; + const block_iq5_ks * bxi = (const block_iq5_ks *)(dptr + 1) + kbx0; + + int qh = get_int_b4(bxi->qh, kqsx); + + #pragma unroll + for (int l = 0; l < qstep/2; ++l) { + + const int ql = get_int_b4(bxi->qs, kqsx + qstep*l); + aux32[0] = ((ql >> 0) & 0x0f0f0f0f) | ((qh & 0x01010101) << 4) | ((bxi->scales[2*l+0] & 1) * 0x20202020); + aux32[1] = ((ql >> 4) & 0x0f0f0f0f) | ((qh & 0x02020202) << 3) | ((bxi->scales[2*l+1] & 1) * 0x20202020); + qh >>= 2; + + const char4 val0 = make_char4(values[aux8[0]], values[aux8[1]], values[aux8[2]], values[aux8[3]]); + const char4 val1 = make_char4(values[aux8[4]], values[aux8[5]], values[aux8[6]], values[aux8[7]]); + +#ifdef INT8_MMA_AVAILABLE + x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx + 16*l + 0] = *(const int *)&val0; + x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx + 16*l + 8] = *(const int *)&val1; +#else + x_qs[i*(2*WARP_SIZE + 1) + kqsx + 16*l + 0] = *(const int *)&val0; + x_qs[i*(2*WARP_SIZE + 1) + kqsx + 16*l + 8] = *(const int *)&val1; +#endif // INT8_MMA_AVAILABLE + } + +#ifdef INT8_MMA_AVAILABLE + x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = d * ((bxi->scales[kqsx] & 254) - 127); +#else + x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + kqsx] = d * ((bxi->scales[kqsx] & 254) - 127); +#endif // INT8_MMA_AVAILABLE + } +} + template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq6_k( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { @@ -3139,6 +3203,14 @@ struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_KS> { static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; }; +template <int mmq_x, int mmq_y, int nwarps, bool need_check> +struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ5_KS> { + static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ; + static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq5_ks<mmq_y, nwarps, need_check>; + static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>; + static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>; +}; + template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup> static __device__ void mul_mat_q_process_tile( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, @@ -3581,6 +3653,7 @@ extern DECL_MMQ_CASE(GGML_TYPE_IQ2_K); extern DECL_MMQ_CASE(GGML_TYPE_IQ3_K); extern DECL_MMQ_CASE(GGML_TYPE_IQ4_K); extern DECL_MMQ_CASE(GGML_TYPE_IQ5_K); +extern DECL_MMQ_CASE(GGML_TYPE_IQ5_KS); extern DECL_MMQ_CASE(GGML_TYPE_IQ6_K); // ------------------------------------------------------------------------------------------------------------------------- diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index c6b6ef72..14fe2547 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -530,6 +530,9 @@ static void ggml_cuda_op_mul_mat_vec_q_impl(ggml_backend_cuda_context & ctx, ggm case GGML_TYPE_IQ5_K: mul_mat_vec_iq5_k_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ids_data, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream); break; + case GGML_TYPE_IQ5_KS: + mul_mat_vec_iq5_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ids_data, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream); + break; case GGML_TYPE_IQ6_K: mul_mat_vec_iq6_k_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ids_data, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream); break; diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index 501fe5a2..13d7b97b 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -107,6 +107,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_KS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KSS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS, @@ -150,6 +151,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KSS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, @@ -186,6 +188,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KSS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, @@ -219,6 +222,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, @@ -252,6 +256,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16, @@ -285,6 +290,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KSS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, @@ -734,6 +740,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, get_rows_iq4_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KSS, get_rows_iq4_kss, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_KS, get_rows_iq5_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, get_rows_iq2_k, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS, get_rows_iq2_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K, get_rows_iq3_k, true); @@ -776,6 +783,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, mul_mv_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KSS_F32, mul_mv_iq4_kss_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_KS_F32, mul_mv_iq5_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, mul_mv_iq2_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KS_F32, mul_mv_iq2_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, mul_mv_iq3_k_f32, ctx->support_simdgroup_reduction); @@ -812,6 +820,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, mul_mv_id_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KSS_F32, mul_mv_id_iq4_kss_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_KS_F32, mul_mv_id_iq5_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, mul_mv_id_iq2_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KS_F32, mul_mv_id_iq2_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, mul_mv_id_iq3_k_f32, ctx->support_simdgroup_reduction); @@ -845,6 +854,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, mul_mm_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F32, mul_mm_iq4_kss_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F32, mul_mm_iq5_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, mul_mm_iq2_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32, mul_mm_iq2_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, mul_mm_iq3_k_f32, ctx->support_simdgroup_mm); @@ -878,6 +888,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16, mul_mm_iq4_xs_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16, mul_mm_iq4_ks_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16, mul_mm_iq4_kss_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F16, mul_mm_iq5_ks_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16, mul_mm_iq2_k_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16, mul_mm_iq2_ks_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16, mul_mm_iq3_k_f16, ctx->support_simdgroup_mm); @@ -911,6 +922,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, mul_mm_id_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KSS_F32, mul_mm_id_iq4_kss_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_KS_F32, mul_mm_id_iq5_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, mul_mm_id_iq2_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32, mul_mm_id_iq2_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, mul_mm_id_iq3_k_f32, ctx->support_simdgroup_mm); @@ -2123,6 +2135,7 @@ static void ggml_metal_encode_node( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F32].pipeline; break; + case GGML_TYPE_IQ5_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32 ].pipeline; break; case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32 ].pipeline; break; @@ -2161,6 +2174,7 @@ static void ggml_metal_encode_node( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16 ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16 ].pipeline; break; case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16].pipeline; break; + case GGML_TYPE_IQ5_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_KS_F16 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16 ].pipeline; break; case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16 ].pipeline; break; @@ -2384,6 +2398,12 @@ static void ggml_metal_encode_node( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KSS_F32].pipeline; } break; + case GGML_TYPE_IQ5_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_KS_F32].pipeline; + } break; case GGML_TYPE_IQ2_K: { nth0 = 4; @@ -2471,8 +2491,9 @@ static void ggml_metal_encode_node( } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS || src0t == GGML_TYPE_IQ4_K || src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K || src0t == GGML_TYPE_IQ4_KS|| - src0t == GGML_TYPE_IQ4_KSS) { - const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) : GGML_TYPE_IQ5_K ? 64*sizeof(float) : 32*sizeof(float); + src0t == GGML_TYPE_IQ4_KSS || src0t == GGML_TYPE_IQ5_KS) { + const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) + : src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ5_KS ? 64*sizeof(float) : 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -2568,6 +2589,7 @@ static void ggml_metal_encode_node( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KSS_F32].pipeline; break; + case GGML_TYPE_IQ5_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32 ].pipeline; break; case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32 ].pipeline; break; @@ -2775,6 +2797,12 @@ static void ggml_metal_encode_node( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KSS_F32].pipeline; } break; + case GGML_TYPE_IQ5_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_KS_F32].pipeline; + } break; case GGML_TYPE_IQ2_K: { nth0 = 4; @@ -2873,8 +2901,9 @@ static void ggml_metal_encode_node( } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS || src0t == GGML_TYPE_IQ4_K || src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K || src0t == GGML_TYPE_IQ4_KS|| - src0t == GGML_TYPE_IQ4_KSS) { - const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) : GGML_TYPE_IQ5_K ? 64*sizeof(float) : 32*sizeof(float); + src0t == GGML_TYPE_IQ4_KSS || src0t == GGML_TYPE_IQ5_KS) { + const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) + : src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ5_KS ? 64*sizeof(float) : 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -2926,6 +2955,7 @@ static void ggml_metal_encode_node( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS ].pipeline; break; case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KSS].pipeline; break; + case GGML_TYPE_IQ5_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_KS ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K ].pipeline; break; case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K ].pipeline; break; diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index d3a2858c..b792844d 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -6276,6 +6276,117 @@ void kernel_mul_mv_iq4_ks_f32_impl( } } +// TODO +void kernel_mul_mv_iq5_ks_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint row_size = 4 + nb*sizeof(block_iq5_ks); + const uint offset0 = (i12/r2)*ne01 + (i13/r3)*(ne01*ne02); + device const char * cx = (device const char *)src0 + (first_row + offset0)*row_size; + device const float * y = (device const float *)src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/16; // 0 or 1 + const int it = tiisg%16; // 0...15 + const int ib64 = it/4; // 0...3 + const int il64 = it%4; // 0...3 + + shared_values[2*tiisg+0] = kvalues_iq5k_f[2*tiisg+0]; + shared_values[2*tiisg+1] = kvalues_iq5k_f[2*tiisg+1]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float2 sumf = 0.f; + float d[2]; + + device const float * yb = y + ix * QK_K + ib64 * 64 + il64 * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + device const float * dptr = (device const float *)cx; + d[0] = *dptr; + device const block_iq5_ks * x = (device const block_iq5_ks *)(dptr + 1) + ix; + dptr += row_size/4; + d[1] = *dptr; + + for (int ibl = ix; ibl < nb; ibl += 2) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[8]; yl[2] = y4[1]; yl[3] = y4[9]; + + device const uint8_t * scales = x->scales; + + for (int row = 0; row < 2; ++row) { + + threadgroup const float * values1 = shared_values + ((scales[2*ib64+0] & 1) << 5); + threadgroup const float * values2 = shared_values + ((scales[2*ib64+1] & 1) << 5); + const float ls1 = ((scales[2*ib64+0] & 254) - 127); + const float ls2 = ((scales[2*ib64+1] & 254) - 127); + + device const uint32_t * q4 = (device const uint32_t *)scales + QK_K/128 + 8*ib64 + 2*il64; + device const uint32_t * qh = (device const uint32_t *)scales + QK_K/128 + QK_K/8 + 2*il64; + + float4 acc1 = {0.f}, acc2 = {0.f}; + + uint32_t h = qh[0] >> 2*ib64; + aux32[0] = ((q4[0] >> 0) & 0x0f0f0f0f) | ((h << 4) & 0x10101010); + aux32[1] = ((q4[0] >> 4) & 0x0f0f0f0f) | ((h << 3) & 0x10101010); + qf1 = {values1[q8[0]], values1[q8[1]], values1[q8[2]], values1[q8[3]]}; + qf2 = {values2[q8[4]], values2[q8[5]], values2[q8[6]], values2[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + h = qh[1] >> 2*ib64; + aux32[0] = ((q4[1] >> 0) & 0x0f0f0f0f) | ((h << 4) & 0x10101010); + aux32[1] = ((q4[1] >> 4) & 0x0f0f0f0f) | ((h << 3) & 0x10101010); + qf1 = {values1[q8[0]], values1[q8[1]], values1[q8[2]], values1[q8[3]]}; + qf2 = {values2[q8[4]], values2[q8[5]], values2[q8[6]], values2[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + sumf[row] += ls1 * (acc1[0] + acc1[1] + acc1[2] + acc1[3]) + ls2 * (acc2[0] + acc2[1] + acc2[2] + acc2[3]); + + scales += row_size; + + } + + yb += 2 * QK_K; + x += 2; + } + + sumf = simd_sum(sumf); + if (tiisg < 2) { + dst[r1*ne0 + im*ne0*ne1 + first_row + tiisg] = sumf[tiisg] * d[tiisg]; + } +} + void kernel_mul_mv_iq4_kss_f32_impl( device const void * src0, device const float * src1, @@ -7315,6 +7426,35 @@ kernel void kernel_mul_mv_iq4_ks_f32( kernel_mul_mv_iq4_ks_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); } +[[host_name("kernel_mul_mv_iq5_ks_f32")]] +kernel void kernel_mul_mv_iq5_ks_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq5_ks_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + [[host_name("kernel_mul_mv_iq4_kss_f32")]] kernel void kernel_mul_mv_iq4_kss_f32( device const void * src0, @@ -7931,6 +8071,25 @@ void dequantize_iq4_ks(device const block_iq4_ks * xb, short il, thread type4x4 } template <typename type4x4> +void dequantize_iq5_ks(device const block_iq5_ks * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + device const uint32_t * q4 = (device const uint32_t *)xb->qs + 8*(ib32/2) + 4*(il%2); + device const uint32_t * qh = (device const uint32_t *)xb->qh + 4*(il%2); + const float ls = (xb->scales[ib32] & 254) - 127; + constant float * values = kvalues_iq5k_f + ((xb->scales[ib32] & 1) << 5); + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = ((q4[i] >> 4*(ib32%2)) & 0x0f0f0f0f) | (((qh[i] >> ib32) & 0x01010101) << 4); + reg[i][0] = ls * values[q8[0]]; + reg[i][1] = ls * values[q8[1]]; + reg[i][2] = ls * values[q8[2]]; + reg[i][3] = ls * values[q8[3]]; + } +} + +template <typename type4x4> void dequantize_iq4_kss(device const block_iq4_kss * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const int ib32 = il/2; @@ -8687,6 +8846,7 @@ template [[host_name("kernel_get_rows_iq6_k")]] kernel get_rows_q_t kernel_get template [[host_name("kernel_get_rows_iq1_bn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRSBN<float4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>>; template [[host_name("kernel_get_rows_iq2_bn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRSBN<float4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>>; template [[host_name("kernel_get_rows_iq4_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; +template [[host_name("kernel_get_rows_iq5_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>>; template [[host_name("kernel_get_rows_iq4_kss")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>>; template [[host_name("kernel_get_rows_iq2_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; @@ -8730,6 +8890,7 @@ template [[host_name("kernel_mul_mm_iq6_k_f32")]] kernel mat_mm_t kernel_mul_m template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>, float>; template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>, float>; template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>, float>; +template [[host_name("kernel_mul_mm_iq5_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>, float>; template [[host_name("kernel_mul_mm_iq4_kss_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, float>; template [[host_name("kernel_mul_mm_iq2_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, float>; @@ -8764,6 +8925,7 @@ template [[host_name("kernel_mul_mm_iq6_k_f16")]] kernel mat_mm_t kernel_mul_m template [[host_name("kernel_mul_mm_iq1_bn_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>, half>; template [[host_name("kernel_mul_mm_iq2_bn_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>, half>; template [[host_name("kernel_mul_mm_iq4_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>, half>; +template [[host_name("kernel_mul_mm_iq5_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>, half>; template [[host_name("kernel_mul_mm_iq4_kss_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, half>; template [[host_name("kernel_mul_mm_iq2_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, half>; @@ -8805,6 +8967,7 @@ template [[host_name("kernel_mul_mm_id_iq6_k_f32")]] kernel mat_mm_id_t kernel template [[host_name("kernel_mul_mm_id_iq1_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>>; template [[host_name("kernel_mul_mm_id_iq2_bn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>>; template [[host_name("kernel_mul_mm_id_iq4_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; +template [[host_name("kernel_mul_mm_id_iq5_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>>; template [[host_name("kernel_mul_mm_id_iq4_kss_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>>; template [[host_name("kernel_mul_mm_id_iq2_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; @@ -9021,6 +9184,7 @@ template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_ks_f32_impl>>; +template [[host_name("kernel_mul_mv_id_iq5_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq5_ks_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_kss_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_kss_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_k_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_ks_f32_impl>>; diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index cc1c8fc6..8ebb0d32 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -15427,6 +15427,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte case GGML_TYPE_IQ6_K: break; case GGML_TYPE_IQ4_KS: break; case GGML_TYPE_IQ4_KSS: break; + case GGML_TYPE_IQ5_KS: break; case GGML_TYPE_IQ4_NL_R4: break; case GGML_TYPE_IQ4_XS_R8: break; case GGML_TYPE_IQ2_XXS_R4: break; diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 94defa47..bc103ab7 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1356,6 +1356,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 4, }, + [GGML_TYPE_IQ5_KS] = { + .type_name = "iq5_ks", + .blck_size = QK_K, + .type_size = sizeof(block_iq5_ks), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq5_ks, + .from_float = quantize_row_iq5_ks, + .from_float_ref = (ggml_from_float_t)quantize_row_iq5_ks_ref, + .vec_dot = vec_dot_iq5_ks_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 4, + }, [GGML_TYPE_Q8_K] = { .type_name = "q8_K", .blck_size = QK_K, @@ -4466,6 +4479,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break; case GGML_FTYPE_MOSTLY_IQ4_KS_R4: wtype = GGML_TYPE_IQ4_KS_R4;break; case GGML_FTYPE_MOSTLY_IQ4_KSS: wtype = GGML_TYPE_IQ4_KSS; break; + case GGML_FTYPE_MOSTLY_IQ5_KS: wtype = GGML_TYPE_IQ5_KS; break; case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break; case GGML_FTYPE_MOSTLY_IQ2_K_R4: wtype = GGML_TYPE_IQ2_K_R4; break; case GGML_FTYPE_MOSTLY_IQ2_KS: wtype = GGML_TYPE_IQ2_KS; break; @@ -11229,6 +11243,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -11701,6 +11716,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -11870,6 +11886,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -15366,6 +15383,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -15775,6 +15793,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -16090,6 +16109,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -16722,6 +16742,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ4_KS_R4: case GGML_TYPE_IQ4_KSS: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ2_K_R4: case GGML_TYPE_IQ2_KS: @@ -23790,6 +23811,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KS_R4:result = quantize_iq4_ks_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KSS: result = quantize_iq4_kss(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ5_KS: result = quantize_iq5_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K_R4:result = quantize_iq2_k_r4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_KS: result = quantize_iq2_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index 6c3a3575..8c649de4 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -2383,6 +2383,79 @@ struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { }; }; +struct DequantizerIQ5KS final : public BaseDequantizer<block_iq5_ks, true> { + DequantizerIQ5KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) { load_values(values); } + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); + auto shifts = _mm_and_si128(_mm_cmpeq_epi16(_mm_and_si128(scales128, m1), m1), m2); + scales128 = _mm_add_epi16(_mm_and_si128(scales128, mask), m127); + auto scales_s = _mm_mullo_epi16(scales128, _mm_add_epi16(m128, shifts)); + s8k.accum_mins(scales_s, q8, i, d, accm); + auto scales256 = MM256_SET_M128I(scales128, scales128); + auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1); + scales[0] = _mm512_shuffle_epi8(all_scales, shuffles[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, shuffles[1]); + scales[2] = _mm512_shuffle_epi8(all_scales, shuffles[2]); + scales[3] = _mm512_shuffle_epi8(all_scales, shuffles[3]); + prepare(x[i].qs, x[i].qh); + } + inline void prepare(const uint8_t * q4, const uint8_t * qh) { + bits.prepare64(q4); + auto h256 = _mm256_loadu_si256((const __m256i *)qh); + auto hbits = _mm512_inserti32x8(_mm512_castsi256_si512(h256), _mm256_srli_epi16(h256, 2), 1); + auto m1 = _mm512_cmpeq_epi8_mask(_mm512_and_si512(hbits, hmask1), hmask1); + auto m2 = _mm512_cmpeq_epi8_mask(_mm512_and_si512(hbits, hmask2), hmask2); + bits.values[0] = _mm512_mask_shuffle_epi8(_mm512_maskz_shuffle_epi8(_knot_mask64(m1), values[0], bits.values[0]), m1, values[1], bits.values[0]); + bits.values[1] = _mm512_mask_shuffle_epi8(_mm512_maskz_shuffle_epi8(_knot_mask64(m2), values[0], bits.values[1]), m2, values[1], bits.values[1]); + hbits = _mm512_srli_epi16(hbits, 4); + m1 = _mm512_cmpeq_epi8_mask(_mm512_and_si512(hbits, hmask1), hmask1); + m2 = _mm512_cmpeq_epi8_mask(_mm512_and_si512(hbits, hmask2), hmask2); + bits.values[2] = _mm512_mask_shuffle_epi8(_mm512_maskz_shuffle_epi8(_knot_mask64(m1), values[0], bits.values[2]), m1, values[1], bits.values[2]); + bits.values[3] = _mm512_mask_shuffle_epi8(_mm512_maskz_shuffle_epi8(_knot_mask64(m2), values[0], bits.values[3]), m2, values[1], bits.values[3]); + // We now have in bits.valuse[0]: 0...31, 64...95 + // bits.valuse[1]: 32..63, 96..127 + // etc. + auto tmp = _mm512_permutex2var_epi64(bits.values[0], permute1, bits.values[1]); + bits.values[1] = _mm512_permutex2var_epi64(bits.values[0], permute2, bits.values[1]); + bits.values[0] = tmp; + tmp = _mm512_permutex2var_epi64(bits.values[2], permute1, bits.values[3]); + bits.values[3] = _mm512_permutex2var_epi64(bits.values[2], permute2, bits.values[3]); + bits.values[2] = tmp; + } + static void load_values(__m512i * values) { + static const uint8_t kvalues_iq5nl[32] = { + 2, 14, 25, 36, 45, 54, 63, 71, 78, 85, 92, 98, 104, 110, 116, 122, 127, + 133, 139, 145, 151, 157, 164, 171, 179, 187, 196, 205, 215, 225, 237, 249, + }; + auto values128_1 = _mm_loadu_si128((const __m128i *)kvalues_iq5nl + 0); + auto values128_2 = _mm_loadu_si128((const __m128i *)kvalues_iq5nl + 1); + auto values256_1 = MM256_SET_M128I(values128_1, values128_1); + auto values256_2 = MM256_SET_M128I(values128_2, values128_2); + values[0] = _mm512_inserti32x8(_mm512_castsi256_si512(values256_1), values256_1, 1); + values[1] = _mm512_inserti32x8(_mm512_castsi256_si512(values256_2), values256_2, 1); + } + + Q4Bits bits; + Scales8KBase s8k; + __m512i values[2]; + const __m512i hmask1 = _mm512_set1_epi8(1); + const __m512i hmask2 = _mm512_set1_epi8(2); + const __m512i permute1 = _mm512_set_epi64(11, 10, 9, 8, 3, 2, 1, 0); + const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4); + const __m128i m127 = _mm_set1_epi16(-127); + const __m128i m128 = _mm_set1_epi16(-128); + const __m128i mask = _mm_set1_epi16(254); + const __m128i m1 = _mm_set1_epi16(1); + const __m128i m2 = _mm_set1_epi16(2); + const __m512i shuffles[4] = { + _mm512_inserti32x8(_mm512_set1_epi16(0x0100), _mm256_set1_epi16(0x0302), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0504), _mm256_set1_epi16(0x0706), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0908), _mm256_set1_epi16(0x0b0a), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0d0c), _mm256_set1_epi16(0x0f0e), 1), + }; +}; + struct DequantizerIQ4KSS final : public BaseDequantizer<block_iq4_kss, true> { DequantizerIQ4KSS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_512()) {} template <typename Q8> @@ -2977,6 +3050,53 @@ struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { const __m128i m4 = _mm_set1_epi16(4); }; +struct DequantizerIQ5KS final : public BaseDequantizer<block_iq5_ks, true> { + DequantizerIQ5KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) { load_values(values); } + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { + hbits = _mm256_loadu_si256((const __m256i *)x[i].qh); + auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); + auto shifts = _mm_and_si128(_mm_cmpeq_epi16(_mm_and_si128(scales128, m1), m1), m2); + scales128 = _mm_add_epi16(_mm_and_si128(scales128, mask), m127); + auto scales_s = _mm_mullo_epi16(scales128, _mm_add_epi16(m128, shifts)); + s8k.accum_mins(scales_s, q8, i, d, accd); + return MM256_SET_M128I(scales128, scales128); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + auto h = j == 0 ? hbits : _mm256_srli_epi16(hbits, 4); + for (int k = 0; k < 4; ++k) { + auto qh = _mm256_and_si256(_mm256_slli_epi16(h, 7-k), mh); + auto q5vl = _mm256_or_si256(bits.values[k], qh); + auto q5vh = _mm256_or_si256(bits.values[k], _mm256_xor_si256(qh, mh)); + bits.values[k] = _mm256_or_si256(_mm256_shuffle_epi8(values[0], q5vl), _mm256_shuffle_epi8(values[1], q5vh)); + } + } + static void load_values(__m256i * values) { + static const uint8_t kvalues_iq5nl[32] = { + 2, 14, 25, 36, 45, 54, 63, 71, 78, 85, 92, 98, 104, 110, 116, 122, 127, + 133, 139, 145, 151, 157, 164, 171, 179, 187, 196, 205, 215, 225, 237, 249, + }; + auto values128_1 = _mm_loadu_si128((const __m128i *)kvalues_iq5nl + 0); + auto values128_2 = _mm_loadu_si128((const __m128i *)kvalues_iq5nl + 1); + values[0] = MM256_SET_M128I(values128_1, values128_1); + values[1] = MM256_SET_M128I(values128_2, values128_2); + } + + Q4Bits bits; + Scales8KBase s8k; + __m256i hbits; + __m256i values[2]; + const __m128i maskl = _mm_set1_epi8(0xf); + const __m128i maskh = _mm_set1_epi8(0x30); + const __m256i mh = _mm256_set1_epi8(-128); // to avoid stupid warning about 0x80 overflowing + const __m128i mask = _mm_set1_epi16(254); + const __m128i m127 = _mm_set1_epi16(-127); + const __m128i m128 = _mm_set1_epi16(-128); + const __m128i m1 = _mm_set1_epi16(1); + const __m128i m2 = _mm_set1_epi16(2); +}; + struct DequantizerIQ4KSS final : public BaseDequantizer<block_iq4_kss, true> { DequantizerIQ4KSS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_256()) {} template <typename Q8> @@ -9455,6 +9575,7 @@ template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { std::is_same_v<Dequantizer, DequantizerIQ3K> || std::is_same_v<Dequantizer, DequantizerIQ4XS>|| std::is_same_v<Dequantizer, DequantizerIQ4KS>|| + std::is_same_v<Dequantizer, DequantizerIQ5KS>|| std::is_same_v<Dequantizer, DequantizerIQ4KSS>) { m.funcs[0] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 1>; m.funcs[1] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 2>; @@ -9620,6 +9741,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ4KS>(mm); break; + case GGML_TYPE_IQ5_KS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ5KS>(mm); + break; case GGML_TYPE_IQ4_KSS: assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ4KSS>(mm); @@ -10926,6 +11051,50 @@ struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { const int16x8_t m127 = vdupq_n_s16(-127); }; +struct DequantizerIQ5KS final : public BaseDequantizer<block_iq5_ks, true> { + DequantizerIQ5KS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(vld1q_s8_x2(iq5nl_values)) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) { + (void)q8; + (void)acc; + auto scales16 = vaddq_s16(vreinterpretq_s16_u16(vandq_u16(vmovl_u8(vld1_u8(x[i].scales)), mask)), m127); + int32x4x2_t scales = {vmovl_s16(vget_low_s16(scales16)), vmovl_s16(vget_high_s16(scales16))}; + return scales; + } + + inline void prepare(int i, int j) { + bits.prepare(x[i].qs+64*j); + if (j == 1) { + for (int k = 0; k < 2; ++k) hbits.val[k] = vshrq_n_u8(hbits.val[k], 4); + } + bits.b1.val[0] = vorrq_u8(bits.b1.val[0], vandq_u8(vshlq_n_u8(hbits.val[0], 4), hm)); + bits.b1.val[1] = vorrq_u8(bits.b1.val[1], vandq_u8(vshlq_n_u8(hbits.val[1], 4), hm)); + bits.b1.val[2] = vorrq_u8(bits.b1.val[2], vandq_u8(vshlq_n_u8(hbits.val[0], 3), hm)); + bits.b1.val[3] = vorrq_u8(bits.b1.val[3], vandq_u8(vshlq_n_u8(hbits.val[1], 3), hm)); + bits.b2.val[0] = vorrq_u8(bits.b2.val[0], vandq_u8(vshlq_n_u8(hbits.val[0], 2), hm)); + bits.b2.val[1] = vorrq_u8(bits.b2.val[1], vandq_u8(vshlq_n_u8(hbits.val[1], 2), hm)); + bits.b2.val[2] = vorrq_u8(bits.b2.val[2], vandq_u8(vshlq_n_u8(hbits.val[0], 1), hm)); + bits.b2.val[3] = vorrq_u8(bits.b2.val[3], vandq_u8(vshlq_n_u8(hbits.val[1], 1), hm)); + for (int k = 0; k < 4; ++k) { + bits.b1.val[k] = vqtbl2q_s8(values, bits.b1.val[k]); + bits.b2.val[k] = vqtbl2q_s8(values, bits.b2.val[k]); + } + } + + Q4bits bits; + const int8x16x2_t values; + const uint8x16_t hshuff = vreinterpretq_u8_u32(uint32x4_t{0x09010800, 0x0b030a02, 0x0d050c04, 0x0f070e06}); + const uint8x16_t hm = vdupq_n_u8(0x10); + const uint16x8_t mask = vdupq_n_u16(254); + const int16x8_t m127 = vdupq_n_s16(-127); + uint8x16x2_t hbits; + +}; + struct DequantizerIQ4KSS final : public BaseDequantizer<block_iq4_kss, true> { DequantizerIQ4KSS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(vld1q_s8_x2(iq4k_values)) {} @@ -14894,6 +15063,9 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { case GGML_TYPE_IQ5_K: MulMat::set_functions<DequantizerIQ5K>(m); break; + case GGML_TYPE_IQ5_KS: + MulMat::set_functions<DequantizerIQ5KS>(m); + break; case GGML_TYPE_IQ6_K: MulMat::set_functions<DequantizerIQ6K>(m); break; diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index ca5e008a..78b25525 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -3419,6 +3419,250 @@ void vec_dot_iq4_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t b } namespace { +static void quantize_row_iq5_ks_impl(const int super_block_size, const int block_size, + int n_per_row, const float * x, char * cy, + float * all_scales, float * weight, + const int8_t * values, + const float * quant_weights, + const int ntry) { + + float * dptr = (float *)cy; + dptr[0] = 0; + block_iq5_ks * y = (block_iq5_ks *)(dptr + 1); + + const int8_t * shifted_values = values + 32; + + float amax_scale = 0; + + for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { + memset(&y[ibl], 0, sizeof(block_iq5_ks)); + const float * xbl = x + ibl*super_block_size; + auto scales = all_scales + ibl*(super_block_size/block_size); + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; + sigma2 *= 2.f/super_block_size; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const float * xb = xbl + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ibl*super_block_size + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + float amax = 0, max = 0; + for (int j = 0; j < block_size; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (amax < 1e-15f) { + scales[ib] = 0; + continue; + } + float d = ntry > 0 ? -max/values[0] : max/values[0]; + float id = 1/d; + float sumqx_p = 0, sumq2_p = 0; + float sumqx_m = 0, sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + d = sumqx_p/sumq2_p; + bool is_shifted = false; + float best = d*sumqx_p; + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d*sumqx_m; + } + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry + values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; + } + id = (itry + shifted_values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(shifted_values, al); + float q = shifted_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(shifted_values, -al); + q = shifted_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; + } + } + if (is_shifted) y[ibl].scales[ib] = 0x01; + scales[ib] = d; + amax_scale = std::max(amax_scale, std::abs(d)); + } + } + float d = amax_scale/127; + *dptr = d; + if (!d) return; + float id = d ? 1/d : 0.f; + float sumqx = 0, sumq2 = 0; + for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { + const float * xbl = x + ibl*super_block_size; + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; + sigma2 *= 2.f/super_block_size; + auto scales = all_scales + (super_block_size/block_size)*ibl; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const int8_t * block_values = y[ibl].scales[ib] & 0x01 ? shifted_values : values; + int l = nearest_int(0.5f*(id*scales[ib]+127.f)); + l = std::max(0, std::min(127, l)) << 1; + y[ibl].scales[ib] |= l; + l -= 127; + float dl = d * l; + float idl = dl ? 1/dl : 0.f; + const float * xb = xbl + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ibl*super_block_size + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + for (int j = 0; j < block_size; ++j) { + uint8_t idx = best_index_iq5nl(block_values, idl*xb[j]); + y[ibl].qs[block_size*(ib/2) + j] |= ((idx & 0xf) << 4*(ib%2)); + y[ibl].qh[j] |= ((idx >> 4) << ib); + float w = weight[j]; + float q = block_values[idx]*l; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + } + } + if (sumq2 > 0) *dptr = sumqx/sumq2; +} +} + +void quantize_row_iq5_ks_ref(const float * x, block_iq5_ks * y, int64_t k) { + quantize_iq5_ks(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq5_ks(const float * x, void * y, int64_t k) { + quantize_iq5_ks(x, (void *)y, 1, k, nullptr); +} + +size_t quantize_iq5_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + constexpr int kBlockSize = 32; + GGML_ASSERT(n_per_row%QK_K == 0); + auto row_size = ggml_row_size(GGML_TYPE_IQ5_KS, n_per_row); + char * qrow = (char *)dst; + float weight[kBlockSize]; + std::vector<float> all_scales(n_per_row/kBlockSize); + for (int64_t row = 0; row < nrows; ++row) { + quantize_row_iq5_ks_impl(QK_K, kBlockSize, n_per_row, src, qrow, all_scales.data(), weight, iq5nl_values, imatrix, 5); + src += n_per_row; + qrow += row_size; + } + return nrows * row_size; +} + +void dequantize_row_iq5_ks(const block_iq5_ks * x, float * y, int64_t k) { + constexpr int kBlockSize = 32; + GGML_ASSERT(k%QK_K == 0); + const float * dptr = (const float *)x; + float d = *dptr; + x = (const block_iq5_ks *)(dptr + 1); + int nblock = k/QK_K; + for (int ibl = 0; ibl < nblock; ++ibl) { + auto qs = x[ibl].qs; + auto qh = x[ibl].qh; + for (int ib64 = 0; ib64 < QK_K/(2*kBlockSize); ++ib64) { + float dl1 = d * ((int)(x[ibl].scales[2*ib64+0] & 254) - 127); + float dl2 = d * ((int)(x[ibl].scales[2*ib64+1] & 254) - 127); + const int8_t * values1 = iq5nl_values + ((x[ibl].scales[2*ib64+0] & 1) << 5); + const int8_t * values2 = iq5nl_values + ((x[ibl].scales[2*ib64+1] & 1) << 5); + for (int j = 0; j < kBlockSize; ++j) { + y[j ] = dl1 * values1[(qs[j] & 0xf) | (((qh[j] >> (2*ib64+0)) & 1) << 4)]; + y[j+kBlockSize] = dl2 * values2[(qs[j] >> 4) | (((qh[j] >> (2*ib64+1)) & 1) << 4)]; + } + y += 2*kBlockSize; + qs += kBlockSize; + } + } +} + +void vec_dot_iq5_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + constexpr int kBlockSize = 32; +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ5_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + GGML_ASSERT(n%QK_K == 0); + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + const float * dptr = (const float *)vx; + const float d = *dptr; + const block_iq5_ks * x = (const block_iq5_ks *)(dptr + 1); + const block_q8_K * y = (const block_q8_K *)vy; + int nblock = n/QK_K; + float sumf = 0; + for (int ibl = 0; ibl < nblock; ++ibl) { + auto qy = y[ibl].qs; + auto qs = x[ibl].qs; + auto qh = x[ibl].qh; + float db = d * y[ibl].d; + for (int ib64 = 0; ib64 < QK_K/(2*kBlockSize); ++ib64) { + float dl1 = db * ((int)(x[ibl].scales[2*ib64+0] & 254) - 127); + float dl2 = db * ((int)(x[ibl].scales[2*ib64+1] & 254) - 127); + const int8_t * values1 = iq5nl_values + ((x[ibl].scales[2*ib64+0] & 1) << 5); + const int8_t * values2 = iq5nl_values + ((x[ibl].scales[2*ib64+1] & 1) << 5); + int suml1 = 0; + int suml2 = 0; + for (int j = 0; j < kBlockSize; ++j) { + suml1 += qy[j ] * values1[(qs[j] & 0xf) | (((qh[j] >> (2*ib64+0)) & 1) << 4)]; + suml2 += qy[j+kBlockSize] * values2[(qs[j] >> 4) | (((qh[j] >> (2*ib64+1)) & 1) << 4)]; + } + sumf += dl1*suml1 + dl2*suml2; + y += 2*kBlockSize; + qs += kBlockSize; + } + } + *s = sumf; +} + +namespace { const uint16_t * scramble_table() { static std::mutex mutex; static std::vector<uint16_t> table; diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h index 24db374b..0533d1f7 100644 --- a/ggml/src/iqk/iqk_quantize.h +++ b/ggml/src/iqk/iqk_quantize.h @@ -67,6 +67,12 @@ size_t quantize_iq2_ks(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst void dequantize_row_iq2_ks(const block_iq2_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void vec_dot_iq2_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void quantize_row_iq5_ks_ref(const float * GGML_RESTRICT x, block_iq5_ks * GGML_RESTRICT y, int64_t k); +void quantize_row_iq5_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +size_t quantize_iq5_ks(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +void dequantize_row_iq5_ks(const block_iq5_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void vec_dot_iq5_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void quantize_row_iq4_nl_r4_ref(const float * GGML_RESTRICT x, block_iq4_nl_r4 * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_nl_r4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); size_t quantize_iq4_nl_r4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); diff --git a/include/llama.h b/include/llama.h index 0f3ae862..98b08bbd 100644 --- a/include/llama.h +++ b/include/llama.h @@ -193,6 +193,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_KS = 147, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_KSS = 148, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q8_KV = 149, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ5_KS = 150, // except 1d tensors // LLAMA_FTYPE_MOSTLY_Q4_0_R8 = 202, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q8_0_R8 = 207, // except 1d tensors @@ -231,7 +232,7 @@ extern "C" { LLAMA_ROPE_SCALING_TYPE_LINEAR = 1, LLAMA_ROPE_SCALING_TYPE_YARN = 2, LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3, - LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE, + LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE, }; enum llama_pooling_type { diff --git a/src/llama.cpp b/src/llama.cpp index 9369d10e..838451f6 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -4373,6 +4373,7 @@ struct llama_model_loader { case GGML_TYPE_IQ4_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS; break; case GGML_TYPE_IQ4_KS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS_R4; break; case GGML_TYPE_IQ4_KSS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KSS; break; + case GGML_TYPE_IQ5_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ5_KS; break; case GGML_TYPE_IQ2_K: ftype = LLAMA_FTYPE_MOSTLY_IQ2_K; break; case GGML_TYPE_IQ2_K_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_K_R4;break; case GGML_TYPE_IQ3_K: ftype = LLAMA_FTYPE_MOSTLY_IQ3_K; break; @@ -5109,6 +5110,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_IQ4_KS: return "IQ4_KS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_KS_R4:return "IQ4_KS_R4 - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_KSS: return "IQ4_KSS - 4.0 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ5_KS: return "IQ5_KS - 5.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_K: return "IQ2_K - 2.375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_K_R4: return "IQ2_K_R4 - 2.375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_K: return "IQ3_K - 3.4325 bpw"; @@ -18619,7 +18621,7 @@ static ggml_type change_type_if_necessary(ggml_type new_type, int nx, int ny) { new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4|| new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4 || new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4 || - new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ3_S_R4) { + new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ3_S_R4|| new_type == GGML_TYPE_IQ5_KS) { if (nx % QK_K != 0) { LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); convert_incompatible_tensor = true; @@ -18661,6 +18663,7 @@ static ggml_type change_type_if_necessary(ggml_type new_type, int nx, int ny) { case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ4_K_R4: case GGML_TYPE_Q4_K_R4: + case GGML_TYPE_IQ5_KS: case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; case GGML_TYPE_IQ5_K: case GGML_TYPE_IQ5_K_R4: @@ -19321,6 +19324,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_IQ4_KS: default_type = GGML_TYPE_IQ4_KS; break; case LLAMA_FTYPE_MOSTLY_IQ4_KS_R4:default_type = GGML_TYPE_IQ4_KS_R4;break; case LLAMA_FTYPE_MOSTLY_IQ4_KSS: default_type = GGML_TYPE_IQ4_KSS; break; + case LLAMA_FTYPE_MOSTLY_IQ5_KS: default_type = GGML_TYPE_IQ5_KS; break; case LLAMA_FTYPE_MOSTLY_IQ2_K: default_type = GGML_TYPE_IQ2_K; break; case LLAMA_FTYPE_MOSTLY_IQ2_K_R4:default_type = GGML_TYPE_IQ2_K_R4;break; case LLAMA_FTYPE_MOSTLY_IQ3_K: default_type = GGML_TYPE_IQ3_K; break; |