diff options
author | ubergarm <leimgrub@gmail.com> | 2025-07-09 04:29:40 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-07-09 10:29:40 +0200 |
commit | 5446ccc8ac87037484ba63f91941de35e0bd58ca (patch) | |
tree | edac132516cc43eb82a1b5500bf93c8d5e7e221e | |
parent | 97c34f4056067e167ed4508366f74b49e60202f7 (diff) |
add hunyuan moe support for 561 (#565)
* add hunyuan moe
* Don't reshape Vcur
* Apply chat template fix from mainline PR14584
-rw-r--r-- | include/llama.h | 1 | ||||
-rw-r--r-- | src/llama-vocab.cpp | 1 | ||||
-rw-r--r-- | src/llama.cpp | 256 |
3 files changed, 258 insertions, 0 deletions
diff --git a/include/llama.h b/include/llama.h index 51db3eab..96895afa 100644 --- a/include/llama.h +++ b/include/llama.h @@ -111,6 +111,7 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_FALCON_3 = 34, LLAMA_VOCAB_PRE_TYPE_FALCON_E = 35, LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 36, //llama.cpp lists this as 35 + LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 37, //llama.cpp lists this as 36 }; // note: these values should be synchronized with ggml_rope diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 474cbd8c..7bae4fec 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -427,6 +427,7 @@ struct llm_tokenizer_bpe { break; case LLAMA_VOCAB_PRE_TYPE_STABLELM2: case LLAMA_VOCAB_PRE_TYPE_QWEN2: + case LLAMA_VOCAB_PRE_TYPE_HUNYUAN: regex_exprs = { // original regex from tokenizer.json // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" diff --git a/src/llama.cpp b/src/llama.cpp index 564304f6..92403f6a 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -235,6 +235,7 @@ enum llm_arch { LLM_ARCH_GRANITE, LLM_ARCH_GRANITE_MOE, LLM_ARCH_COHERE2, + LLM_ARCH_HUNYUAN_MOE, LLM_ARCH_UNKNOWN, }; @@ -291,6 +292,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_GRANITE, "granite" }, { LLM_ARCH_GRANITE_MOE, "granitemoe" }, { LLM_ARCH_COHERE2, "cohere2" }, + { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1596,6 +1598,29 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA }, }, { + LLM_ARCH_HUNYUAN_MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, @@ -1638,6 +1663,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_MEGREZ, LLM_CHAT_TEMPLATE_LLAMA4, LLM_CHAT_TEMPLATE_BITNET, + LLM_CHAT_TEMPLATE_HUNYUAN_MOE, LLM_CHAT_TEMPLATE_UNKNOWN, }; @@ -1675,6 +1701,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = { { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, { "megrez", LLM_CHAT_TEMPLATE_MEGREZ }, { "llama4", LLM_CHAT_TEMPLATE_LLAMA4 }, + { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE }, { "bitnet", LLM_CHAT_TEMPLATE_BITNET }, }; @@ -2570,6 +2597,7 @@ enum e_model { MODEL_27B, MODEL_17B_16E, MODEL_17B_128E, + MODEL_80B_A13B, }; static const size_t kiB = 1024; @@ -5203,6 +5231,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_27B: return "27B"; case MODEL_17B_16E: return "17Bx16E (Scout)"; case MODEL_17B_128E: return "17Bx128E (Maverick)"; + case MODEL_80B_A13B: return "80B.A13B"; default: return "?B"; } } @@ -6037,6 +6066,17 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_HUNYUAN_MOE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_80B_A13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -6306,6 +6346,10 @@ static void llm_load_vocab( tokenizer_pre == "seed-coder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SEED_CODER; vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "hunyuan") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_HUNYUAN; + vocab.tokenizer_clean_spaces = false; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -9164,6 +9208,47 @@ static bool llm_load_tensors( layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; + case LLM_ARCH_HUNYUAN_MOE: + { + model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); + + layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); + layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); + + layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + + layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); + layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0); + layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -16862,6 +16947,158 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_hunyuan_moe() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + const float kq_scale = 1.0f / sqrtf(float(n_embd_head)); + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, cb, il); + cb(Kcur, "Kcur_norm", il); + + Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, cb, il); + cb(Qcur, "Qcur_norm", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + cb(cur, "attn_out", il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + cur = llm_build_norm(ctx0,ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network (non-MoE) + ggml_tensor * cur_mlp = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up_shexp, NULL, NULL, + model.layers[il].ffn_gate_shexp, NULL, NULL, + model.layers[il].ffn_down_shexp, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur_mlp, "ffn_mlp", il); + + // MoE branch + ggml_tensor * cur_moe = llm_build_moe_ffn(ctx0, lctx, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + nullptr, + n_expert, n_expert_used, + LLM_FFN_SILU, + true, // norm_topk_prob + false, + 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, + cb, + il); + cb(cur_moe, "ffn_moe_out", il); + + ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp); + cb(ffn_out, "ffn_out", il); + + cur = ggml_add(ctx0, ffn_out, ffn_inp); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); + + cb(cur, "result_norm", -1); + //res->t_embd = cur; + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + cb(cur, "result_output", -1); + //res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) { @@ -17157,6 +17394,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_jais(); } break; + case LLM_ARCH_HUNYUAN_MOE: + { + result = llm.build_hunyuan_moe(); + } break; default: GGML_ABORT("fatal error"); } @@ -20929,6 +21170,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_OPENELM: case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: + case LLM_ARCH_HUNYUAN_MOE: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here @@ -22742,6 +22984,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_MEGREZ; } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) { return LLM_CHAT_TEMPLATE_LLAMA4; + } else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) { + return LLM_CHAT_TEMPLATE_HUNYUAN_MOE; } return LLM_CHAT_TEMPLATE_UNKNOWN; } @@ -23160,6 +23404,18 @@ static int32_t llama_chat_apply_template_internal( ss << message->content; } } + } else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) { + // tencent/Hunyuan-A13B-Instruct + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "<|startoftext|>" << message->content << "<|extra_4|>"; + } else if (role == "assistant") { + ss << "<|startoftext|>" << message->content << "<|eos|>"; + } else { + ss << "<|startoftext|>" << message->content << "<|extra_0|>"; + } + } } else { // template not supported return -1; |