summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2024-01-31 17:30:17 +0200
committerGitHub <noreply@github.com>2024-01-31 17:30:17 +0200
commit5cb04dbc16d1da38c8fdcc0111b40e67d00dd1c3 (patch)
tree3ef8dc640d5c08466309c09a8ac2963bb760af06
parentefb7bdbbd061d087c788598b97992c653f992ddd (diff)
llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)
* llama : remove LLAMA_MAX_DEVICES from llama.h ggml-ci * Update llama.cpp Co-authored-by: slaren <slarengh@gmail.com> * server : remove LLAMA_MAX_DEVICES ggml-ci * llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD ggml-ci * train : remove LLAMA_SUPPORTS_GPU_OFFLOAD * readme : add deprecation notice * readme : change deprecation notice to "remove" and fix url * llama : remove gpu includes from llama.h ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
-rw-r--r--README.md3
-rw-r--r--common/common.cpp56
-rw-r--r--common/common.h68
-rw-r--r--common/train.cpp12
-rw-r--r--examples/batched-bench/batched-bench.cpp2
-rw-r--r--examples/llama-bench/llama-bench.cpp16
-rw-r--r--examples/server/server.cpp44
-rw-r--r--llama.cpp39
-rw-r--r--llama.h29
9 files changed, 144 insertions, 125 deletions
diff --git a/README.md b/README.md
index 7746cb51..e6ed1d42 100644
--- a/README.md
+++ b/README.md
@@ -10,7 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
-- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
+- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
+- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
- Collecting Apple Silicon performance stats:
diff --git a/common/common.cpp b/common/common.cpp
index 9d976c7c..ce739b15 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -583,20 +583,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_gpu_layers = std::stoi(argv[i]);
-#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
-#endif
+ if (!llama_supports_gpu_offload()) {
+ fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
+ fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
+ }
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gpu_layers_draft = std::stoi(argv[i]);
-#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
-#endif
+ if (!llama_supports_gpu_offload()) {
+ fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
+ fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
+ }
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
@@ -637,11 +637,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
- if (split_arg.size() >= LLAMA_MAX_DEVICES) {
+ if (split_arg.size() >= llama_max_devices()) {
invalid_param = true;
break;
}
- for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
+ for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
@@ -989,30 +989,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
- if (llama_mlock_supported()) {
+ if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
- if (llama_mmap_supported()) {
+ if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -ngld N, --n-gpu-layers-draft N\n");
- printf(" number of layers to store in VRAM for the draft model\n");
- printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
- printf(" how to split the model across multiple GPUs, one of:\n");
- printf(" - none: use one GPU only\n");
- printf(" - layer (default): split layers and KV across GPUs\n");
- printf(" - row: split rows across GPUs\n");
- printf(" -ts SPLIT, --tensor-split SPLIT\n");
- printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
- printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
-#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
+ if (llama_supports_gpu_offload()) {
+ printf(" -ngl N, --n-gpu-layers N\n");
+ printf(" number of layers to store in VRAM\n");
+ printf(" -ngld N, --n-gpu-layers-draft N\n");
+ printf(" number of layers to store in VRAM for the draft model\n");
+ printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
+ printf(" how to split the model across multiple GPUs, one of:\n");
+ printf(" - none: use one GPU only\n");
+ printf(" - layer (default): split layers and KV across GPUs\n");
+ printf(" - row: split rows across GPUs\n");
+ printf(" -ts SPLIT, --tensor-split SPLIT\n");
+ printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
+ printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
+ printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
+ }
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
@@ -1651,7 +1651,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
- const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
+ const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
diff --git a/common/common.h b/common/common.h
index 214a379b..24a99d72 100644
--- a/common/common.h
+++ b/common/common.h
@@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET;
int32_t get_num_physical_cores();
struct gpt_params {
- uint32_t seed = -1; // RNG seed
-
- int32_t n_threads = get_num_physical_cores();
- int32_t n_threads_draft = -1;
- int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
- int32_t n_threads_batch_draft = -1;
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_ctx = 512; // context size
- int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_draft = 8; // number of tokens to draft during speculative decoding
- int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
- int32_t n_parallel = 1; // number of parallel sequences to decode
- int32_t n_sequences = 1; // number of sequences to decode
- float p_accept = 0.5f; // speculative decoding accept probability
- float p_split = 0.1f; // speculative decoding split probability
- int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
- int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
- llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
- int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
- float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
- int32_t n_beams = 0; // if non-zero then use beam search of given width.
- int32_t grp_attn_n = 1; // group-attention factor
- int32_t grp_attn_w = 512; // group-attention width
- int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
- float rope_freq_base = 0.0f; // RoPE base frequency
- float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
- float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
- float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
- float yarn_beta_fast = 32.0f; // YaRN low correction dim
- float yarn_beta_slow = 1.0f; // YaRN high correction dim
- int32_t yarn_orig_ctx = 0; // YaRN original context length
- int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
- // pinging @cebtenzzre
+ uint32_t seed = -1; // RNG seed
+
+ int32_t n_threads = get_num_physical_cores();
+ int32_t n_threads_draft = -1;
+ int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
+ int32_t n_threads_batch_draft = -1;
+ int32_t n_predict = -1; // new tokens to predict
+ int32_t n_ctx = 512; // context size
+ int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
+ int32_t n_keep = 0; // number of tokens to keep from initial prompt
+ int32_t n_draft = 8; // number of tokens to draft during speculative decoding
+ int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
+ int32_t n_parallel = 1; // number of parallel sequences to decode
+ int32_t n_sequences = 1; // number of sequences to decode
+ float p_accept = 0.5f; // speculative decoding accept probability
+ float p_split = 0.1f; // speculative decoding split probability
+ int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
+ int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
+ llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
+ int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
+ float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
+ int32_t n_beams = 0; // if non-zero then use beam search of given width.
+ int32_t grp_attn_n = 1; // group-attention factor
+ int32_t grp_attn_w = 512; // group-attention width
+ int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
+ float rope_freq_base = 0.0f; // RoPE base frequency
+ float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
+ float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
+ float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
+ float yarn_beta_fast = 32.0f; // YaRN low correction dim
+ float yarn_beta_slow = 1.0f; // YaRN high correction dim
+ int32_t yarn_orig_ctx = 0; // YaRN original context length
+ int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
+ // pinging @cebtenzzre
// // sampling parameters
struct llama_sampling_params sparams;
diff --git a/common/train.cpp b/common/train.cpp
index e6f2f7a2..e4c3d5df 100644
--- a/common/train.cpp
+++ b/common/train.cpp
@@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
*invalid_param = true;
return true;
}
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params->n_gpu_layers = std::stoi(argv[i]);
-#else
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
-#endif
+ if (llama_supports_gpu_offload()) {
+ params->n_gpu_layers = std::stoi(argv[i]);
+ } else {
+ fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
+ fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
+ }
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;
diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp
index 7924db26..b52d6845 100644
--- a/examples/batched-bench/batched-bench.cpp
+++ b/examples/batched-bench/batched-bench.cpp
@@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
- const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
+ const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp
index 542cc7bb..c5a6f744 100644
--- a/examples/llama-bench/llama-bench.cpp
+++ b/examples/llama-bench/llama-bench.cpp
@@ -160,7 +160,7 @@ struct cmd_params {
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q;
- std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
+ std::vector<std::vector<float>> tensor_split;
int reps;
bool verbose;
output_formats output_format;
@@ -179,7 +179,7 @@ static const cmd_params cmd_params_defaults = {
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
- /* tensor_split */ {{}},
+ /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
@@ -380,10 +380,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
+ GGML_ASSERT(split_arg.size() <= llama_max_devices());
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
- for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
+ std::vector<float> tensor_split(llama_max_devices());
+ for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
@@ -459,7 +459,7 @@ struct cmd_params_instance {
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
+ std::vector<float> tensor_split;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
@@ -582,7 +582,7 @@ struct test {
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
+ std::vector<float> tensor_split;
int n_prompt;
int n_gen;
std::string test_time;
@@ -704,7 +704,7 @@ struct test {
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
- for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
+ for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
index 21bdce8e..ea77125e 100644
--- a/examples/server/server.cpp
+++ b/examples/server/server.cpp
@@ -1789,28 +1789,28 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_mlock_supported())
+ if (llama_supports_mlock())
{
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
- if (llama_mmap_supported())
+ if (llama_supports_mmap())
{
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
- printf(" how to split the model across multiple GPUs, one of:\n");
- printf(" - none: use one GPU only\n");
- printf(" - layer (default): split layers and KV across GPUs\n");
- printf(" - row: split rows across GPUs\n");
- printf(" -ts SPLIT --tensor-split SPLIT\n");
- printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
- printf(" or for intermediate results and KV (with split-mode = row)\n");
-#endif
+ if (llama_supports_gpu_offload()) {
+ printf(" -ngl N, --n-gpu-layers N\n");
+ printf(" number of layers to store in VRAM\n");
+ printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
+ printf(" how to split the model across multiple GPUs, one of:\n");
+ printf(" - none: use one GPU only\n");
+ printf(" - layer (default): split layers and KV across GPUs\n");
+ printf(" - row: split rows across GPUs\n");
+ printf(" -ts SPLIT --tensor-split SPLIT\n");
+ printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
+ printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
+ printf(" or for intermediate results and KV (with split-mode = row)\n");
+ }
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -a ALIAS, --alias ALIAS\n");
@@ -2066,13 +2066,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
-#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params.n_gpu_layers = std::stoi(argv[i]);
-#else
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
+ if (llama_supports_gpu_offload()) {
+ params.n_gpu_layers = std::stoi(argv[i]);
+ } else {
+ LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
-#endif
+ }
}
else if (arg == "--split-mode" || arg == "-sm")
{
@@ -2115,9 +2115,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
+ GGML_ASSERT(split_arg.size() <= llama_max_devices());
- for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
+ for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
{
if (i_device < split_arg.size())
{
diff --git a/llama.cpp b/llama.cpp
index bb23689f..9b249ba9 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -10090,18 +10090,45 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
return result;
}
-int32_t llama_max_devices(void) {
- return LLAMA_MAX_DEVICES;
+size_t llama_max_devices(void) {
+#if defined(GGML_USE_METAL)
+ return 1;
+#elif defined(GGML_USE_CUBLAS)
+ return GGML_CUDA_MAX_DEVICES;
+#elif defined(GGML_USE_SYCL)
+ return GGML_SYCL_MAX_DEVICES;
+#else
+ return 1;
+#endif
}
-bool llama_mmap_supported(void) {
+bool llama_supports_mmap(void) {
return llama_mmap::SUPPORTED;
}
-bool llama_mlock_supported(void) {
+bool llama_supports_mlock(void) {
return llama_mlock::SUPPORTED;
}
+bool llama_supports_gpu_offload(void) {
+#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
+ // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
+ return true;
+#else
+ return false;
+#endif
+}
+
+// deprecated:
+bool llama_mmap_supported(void) {
+ return llama_supports_mmap();
+}
+
+bool llama_mlock_supported(void) {
+ return llama_supports_mlock();
+}
+
void llama_backend_init(bool numa) {
ggml_time_init();
@@ -10133,8 +10160,8 @@ int64_t llama_time_us(void) {
}
struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_model_params params) {
+ const char * path_model,
+ struct llama_model_params params) {
ggml_time_init();
llama_model * model = new llama_model;
diff --git a/llama.h b/llama.h
index 17d43d03..9a60e9bf 100644
--- a/llama.h
+++ b/llama.h
@@ -3,15 +3,7 @@
#include "ggml.h"
#include "ggml-backend.h"
-#ifdef GGML_USE_CUBLAS
-#include "ggml-cuda.h"
-#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
-#elif defined(GGML_USE_SYCL)
-#include "ggml-sycl.h"
-#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
-#else
-#define LLAMA_MAX_DEVICES 1
-#endif // GGML_USE_CUBLAS
+
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
@@ -49,12 +41,6 @@
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4
-#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
- defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
-// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
-#define LLAMA_SUPPORTS_GPU_OFFLOAD
-#endif
-
#ifdef __cplusplus
extern "C" {
#endif
@@ -201,7 +187,7 @@ extern "C" {
// LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu;
- // proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
+ // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
@@ -338,9 +324,14 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void);
- LLAMA_API int32_t llama_max_devices(void);
- LLAMA_API bool llama_mmap_supported (void);
- LLAMA_API bool llama_mlock_supported(void);
+ LLAMA_API size_t llama_max_devices(void);
+
+ LLAMA_API bool llama_supports_mmap (void);
+ LLAMA_API bool llama_supports_mlock (void);
+ LLAMA_API bool llama_supports_gpu_offload(void);
+
+ LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
+ LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);