summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorsaood06 <saood05@gmail.com>2025-04-22 01:34:13 -0500
committerGitHub <noreply@github.com>2025-04-22 08:34:13 +0200
commitcc398007238cbbb064609cbdc9bc4aab03c658d7 (patch)
treea414370696faa5ad8a89ac5aa7ec7cf2171a78a4
parent93cd77b65501246603061c7ee2801a992e3c6312 (diff)
Add support for bitnet2b_2501 model (#337)
* add support for bitnet2b_2501 model * Fixes * Support both model names --------- Co-authored-by: potassiummmm <zhou.hansong@outlook.com>
-rwxr-xr-xconvert_hf_to_gguf.py1
-rw-r--r--gguf-py/gguf/constants.py24
-rw-r--r--gguf-py/gguf/tensor_mapping.py5
-rw-r--r--src/llama.cpp301
4 files changed, 330 insertions, 1 deletions
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
index 1ee82724..a6ab09c0 100755
--- a/convert_hf_to_gguf.py
+++ b/convert_hf_to_gguf.py
@@ -1598,6 +1598,7 @@ class LlamaModel(Model):
@Model.register("BitnetForCausalLM")
+@Model.register("BitNetForCausalLM")
class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index 93c614d6..22cde145 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -219,6 +219,7 @@ class MODEL_ARCH(IntEnum):
DEEPSEEK2 = auto()
CHATGLM = auto()
BITNET = auto()
+ BITNET_25 = auto()
T5 = auto()
T5ENCODER = auto()
JAIS = auto()
@@ -351,6 +352,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.BITNET: "bitnet",
+ MODEL_ARCH.BITNET_25: "bitnet-25",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
MODEL_ARCH.JAIS: "jais",
@@ -1019,6 +1021,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_SUB_NORM,
MODEL_TENSOR.FFN_SUB_NORM,
],
+ MODEL_ARCH.BITNET_25: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ROPE_FREQS,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.ATTN_ROT_EMBD,
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ MODEL_TENSOR.FFN_GATE_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.ATTN_SUB_NORM,
+ MODEL_TENSOR.FFN_SUB_NORM,
+ ],
MODEL_ARCH.T5: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py
index e8725426..1dea6a82 100644
--- a/gguf-py/gguf/tensor_mapping.py
+++ b/gguf-py/gguf/tensor_mapping.py
@@ -131,6 +131,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
+ "layers.{bid}.attention.wqkv",
),
# Attention query
@@ -464,10 +465,14 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_SUB_NORM: (
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
+ "layers.{bid}.attention.attn_sub_norm", # bitnet
+ "model.layers.{bid}.self_attn.attn_sub_norm",
),
MODEL_TENSOR.FFN_SUB_NORM: (
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
+ "layers.{bid}.feed_forward.ffn_sub_norm", # bitnet
+ "model.layers.{bid}.mlp.ffn_sub_norm",
),
MODEL_TENSOR.DEC_ATTN_NORM: (
diff --git a/src/llama.cpp b/src/llama.cpp
index 5340d847..dcac3833 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -223,6 +223,7 @@ enum llm_arch {
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
+ LLM_ARCH_BITNET_25,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
LLM_ARCH_JAIS,
@@ -272,6 +273,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_BITNET, "bitnet" },
+ { LLM_ARCH_BITNET_25, "bitnet-25" },
{ LLM_ARCH_T5, "t5" },
{ LLM_ARCH_T5ENCODER, "t5encoder" },
{ LLM_ARCH_JAIS, "jais" },
@@ -1324,6 +1326,34 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
},
},
{
+ LLM_ARCH_BITNET_25,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
+ { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
+ },
+ },
+ {
LLM_ARCH_T5,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
@@ -1468,6 +1498,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_LLAMA4,
+ LLM_CHAT_TEMPLATE_BITNET,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
@@ -1504,6 +1535,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
+ { "bitnet", LLM_CHAT_TEMPLATE_BITNET },
};
@@ -5120,7 +5152,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_BITNET_25) {
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@@ -5690,6 +5722,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_BITNET_25:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 30: model.type = e_model::MODEL_2B; break; // bitnet2b_2501
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_T5:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -8107,6 +8148,90 @@ static bool llm_load_tensors(
layer.ffn_up_scale = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
}
} break;
+ case LLM_ARCH_BITNET_25:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
+ layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
+ if (n_expert == 0) {
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+
+ // optional MLP bias
+ layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ } else {
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ if (layer.ffn_gate_exps) {
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ } else {
+ // merge split expert into a single tensor for compatibility with older models
+ // requires disabling mmap
+ use_mmap_buffer = false;
+
+ ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
+
+ layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
+ layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
+ layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
+
+ ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
+
+ for (uint32_t x = 0; x < n_expert; ++x) {
+ // the individual experts are loaded into a view of the merged tensor
+ ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+ }
+ }
+ }
+ }
+ } break;
case LLM_ARCH_T5:
{
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
@@ -14731,6 +14856,156 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_bitnet_25() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+ // printf("%f\n\n\n\n",((float*)rope_factors->data)[1]);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ NULL, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_sub_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_sub_norm", il);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
+ if (model.layers[il].wo_scale) {
+ cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
+ }
+ if (model.layers[il].bo) {
+ cur = ggml_add(ctx0, cur, model.layers[il].bo);
+ }
+ cb(cur, "attn_o_out", il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ // n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
+ model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
+ NULL, NULL, NULL,
+ NULL,
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_sub_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_sub_norm", il);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
+ if (model.layers[il].ffn_down_scale) {
+ cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
+ }
+ cb(cur, "ffn_down", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_t5_encoder() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
@@ -15527,6 +15802,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_bitnet();
} break;
+ case LLM_ARCH_BITNET_25:
+ {
+ result = llm.build_bitnet_25();
+ } break;
case LLM_ARCH_T5:
{
if (lctx.is_encoding) {
@@ -19210,6 +19489,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
+ case LLM_ARCH_BITNET_25:
case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE:
@@ -21403,6 +21683,25 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<|header_start|>assistant<|header_end|>\n\n";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_BITNET) {
+ // bitnet-25
+ std::string system_prompt = "";
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << "System: ";
+ ss << message->content;
+ } else if (role == "user") {
+ ss << "User: ";
+ if (!system_prompt.empty()) {
+ ss << system_prompt;
+ system_prompt = "";
+ }
+ ss << message->content << "<|eot_id|>Assistant: ";
+ } else {
+ ss << message->content;
+ }
+ }
} else {
// template not supported
return -1;