diff options
author | Nexes the Elder <124105151+Nexesenex@users.noreply.github.com> | 2025-07-13 11:28:18 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-07-13 11:28:18 +0200 |
commit | e2b1a5e1fcb3ad55eae03c58c986a21e842ff7a4 (patch) | |
tree | c556fff01272b4a42b015c0f7cabe1a4fe452631 | |
parent | b5ddec9516c837a40f97e3bb5e96ccebdd30d4f5 (diff) |
Fix attn_v conditionality (#604)
To retain compatibility with : https://github.com/ikawrakow/ik_llama.cpp/pull/91
We need "else if" and not "if", otherwise the MOE and 70b condition takes precedence over the specified quant in the CLI.
-rw-r--r-- | src/llama.cpp | 24 |
1 files changed, 12 insertions, 12 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index 8e6c66d3..5777689e 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -19447,6 +19447,18 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } } else if (name.find("attn_v.weight") != std::string::npos) { if (qs.params->attn_v_type < GGML_TYPE_COUNT) new_type = qs.params->attn_v_type; + else if (qs.model.hparams.n_expert >= 4) { + // for the 4-8-expert model, bumping this to Q8_0 trades just ~128MB + // TODO: explore better strategies + new_type = GGML_TYPE_Q8_0; + } + else if (qs.model.type == MODEL_70B) { + // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is + // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with + // nearly negligible increase in model size by quantizing this tensor with more bits: + if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; + if (new_type == GGML_TYPE_IQ3_K) new_type = GGML_TYPE_IQ5_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } @@ -19531,18 +19543,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n if (qs.model.hparams.n_vocab >= 127999 && (qs.model.type == MODEL_8B || qs.model.type == MODEL_70B)) new_type = GGML_TYPE_IQ6_K; } - if (qs.model.type == MODEL_70B) { - // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is - // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with - // nearly negligible increase in model size by quantizing this tensor with more bits: - if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; - if (new_type == GGML_TYPE_IQ3_K) new_type = GGML_TYPE_IQ5_K; - } - if (qs.model.hparams.n_expert >= 4) { - // for the 4-8-expert model, bumping this to Q8_0 trades just ~128MB - // TODO: explore better strategies - new_type = GGML_TYPE_Q8_0; - } else if (qs.model.hparams.n_gqa() >= 4) { if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (new_type == GGML_TYPE_Q2_K_R4 || new_type == GGML_TYPE_IQ3_XXS_R4) new_type = GGML_TYPE_IQ3_K_R4; |