diff options
author | slaren <slarengh@gmail.com> | 2024-03-13 18:54:21 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-13 18:54:21 +0100 |
commit | f30ea47a87ed4446ad55adb265755dc9102956a2 (patch) | |
tree | fc885962ca3d537cfdfbd6b4a2820b7c864b1ee0 /common/common.cpp | |
parent | d8fd0ccf6ac8b07791ffd1575eed436930854ae3 (diff) |
llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'common/common.cpp')
-rw-r--r-- | common/common.cpp | 14 |
1 files changed, 12 insertions, 2 deletions
diff --git a/common/common.cpp b/common/common.cpp index 2f38ac63..73b1b61b 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -483,6 +483,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } params.n_batch = std::stoi(argv[i]); + } else if (arg == "-ub" || arg == "--ubatch-size") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_ubatch = std::stoi(argv[i]); } else if (arg == "--keep") { if (++i >= argc) { invalid_param = true; @@ -977,7 +983,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" binary file containing multiple choice tasks.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); - printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); + printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch); + printf(" -ub N, --ubatch-size N\n"); + printf(" physical maximum batch size (default: %d)\n", params.n_ubatch); printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n"); printf(" (default: %s)\n", sampler_type_names.c_str()); printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str()); @@ -1287,8 +1295,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param auto cparams = llama_context_default_params(); cparams.n_ctx = params.n_ctx; - cparams.n_batch = params.n_batch; cparams.n_seq_max = params.n_parallel; + cparams.n_batch = params.n_batch; + cparams.n_ubatch = params.n_ubatch; cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; cparams.seed = params.seed; @@ -1379,6 +1388,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), }; llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); llama_kv_cache_clear(lctx); + llama_synchronize(lctx); llama_reset_timings(lctx); } |