diff options
author | Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> | 2023-10-11 13:35:46 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-10-11 22:35:46 +0300 |
commit | 70c29da118cdb02bfcbd0376c32b5b2236e48e48 (patch) | |
tree | 9ba08e6a18d60e24b580d58b57f9c2b7a8848f3d /common/sampling.cpp | |
parent | 8c70a5ff25964f0a81e20d142a2f5ac5baff22fc (diff) |
common : fix mirostat state when using multiple sequences (#3543)
* Fix mirostat state when using multiple sequences
* Fix mirostat by completely refactoring sampling!
* Try to fix zig build.
* Export function to fetch/create default sampler states
Code formatting cleanups and add some comments
Silence a warning about id not being used when logging is disabled
* Apply some renaming suggestions.
Fix comments that were out of sync with the pull.
* Use more consistant naming convention for sampling contexts
Diffstat (limited to 'common/sampling.cpp')
-rw-r--r-- | common/sampling.cpp | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/common/sampling.cpp b/common/sampling.cpp new file mode 100644 index 00000000..8ce41945 --- /dev/null +++ b/common/sampling.cpp @@ -0,0 +1,166 @@ +#include "sampling.h" + +llama_sampling_context::~llama_sampling_context() { + for (auto & it : sequence_contexts) { + if (it.second.grammar != NULL) { + llama_grammar_free(it.second.grammar); + it.second.grammar = NULL; + } + } +} + +llama_sampling_context llama_sampling_context_init( + const struct gpt_params & params, + llama_grammar * grammar) { + llama_sampling_context result; + + result.params = params.sampling_params; + result.grammar = grammar; + return result; +} + +// Note: Creates the context if it doesn't exist, so this always return something. +llama_sampler_sequence_context & llama_sampling_get_sequence_context( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it != ctx_sampling.sequence_contexts.end()) { + return it->second; + } + llama_sampler_sequence_context new_ctx = { + 2.0f * ctx_sampling.params.mirostat_tau, + ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL, + }; + return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second; +} + +bool llama_sampling_context_reset( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it == ctx_sampling.sequence_contexts.end()) return false; + if (it->second.grammar != NULL) { + llama_grammar_free(it->second.grammar); + it->second.grammar = NULL; + } + ctx_sampling.sequence_contexts.erase(it); + return true; +} + +llama_token llama_sampling_sample( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_sampling_context & ctx_sampling, + const std::vector<llama_token> & last_tokens, + std::vector<llama_token_data> & candidates, + const int idx, + llama_seq_id seq) { + const int n_ctx = llama_n_ctx(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + + const llama_sampling_params & params = ctx_sampling.params; + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + + llama_token id = 0; + + float * logits = llama_get_logits_ith(ctx, idx); + + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + candidates.clear(); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + + if (ctx_guidance) { + llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); + } + + // apply penalties + if (!last_tokens.empty()) { + const float nl_logit = logits[llama_token_nl(ctx)]; + const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); + + llama_sample_repetition_penalty(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + + if (!penalize_nl) { + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(ctx)) { + cur_p.data[idx].logit = nl_logit; + break; + } + } + } + } + + llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq); + + if (ctx_seq.grammar != NULL) { + llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar); + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &cur_p); + } else { + if (mirostat == 1) { + const int mirostat_m = 100; + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu); + } else if (mirostat == 2) { + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu); + } else { + // Temperature sampling + size_t min_keep = std::max(1, params.n_probs); + llama_sample_top_k (ctx, &cur_p, top_k, min_keep); + llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); + llama_sample_typical (ctx, &cur_p, typical_p, min_keep); + llama_sample_top_p (ctx, &cur_p, top_p, min_keep); + llama_sample_temp(ctx, &cur_p, temp); + + { + const int n_top = 10; + LOG("top %d candidates:\n", n_top); + + for (int i = 0; i < n_top; i++) { + const llama_token id = cur_p.data[i].id; + (void)id; // To avoid a warning that id is unused when logging is disabled. + LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); + } + } + + id = llama_sample_token(ctx, &cur_p); + + LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); + } + } + + if (ctx_seq.grammar != NULL) { + llama_grammar_accept_token(ctx, ctx_seq.grammar, id); + } + + return id; +} |