summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-10-18 16:21:57 +0300
committerGitHub <noreply@github.com>2023-10-18 16:21:57 +0300
commit0e89203b517c95ec6675eda75d200a60d1e8921d (patch)
tree3aba40ef0362d061f240bd43c52e86a8f728f89d /common
parentc67fe68e417f766970fb1feaf2e66458aa24116a (diff)
speculative : add tree-based sampling example (#3624)
* sampling : one sequence per sampling context ggml-ci * speculative : add tree-based sampling support ggml-ci * speculative : reuse the n_parallel CLI param * speculative : refactor sampling * examples : fix build after sampling refactoring ggml-ci * batched : fix n_seq_id * sampling : fix malloc ggml-ci * swift : fix build ggml-ci * swift : try to fix build ggml-ci * prompts : add assistant.txt * common : add llama_batch_add() and llama_batch_clear() helpers * speculative : minor refactor ggml-ci * minor : comments + rename ggml-ci * speculative : fix off-by-one for n_drafted * speculative : fix the n_drafted fix + p constants
Diffstat (limited to 'common')
-rw-r--r--common/common.cpp21
-rw-r--r--common/common.h16
-rw-r--r--common/log.h101
-rw-r--r--common/sampling.cpp211
-rw-r--r--common/sampling.h87
5 files changed, 263 insertions, 173 deletions
diff --git a/common/common.cpp b/common/common.cpp
index 3e4b8a8c..ce14d66b 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -820,6 +820,27 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
return cparams;
}
+void llama_batch_clear(struct llama_batch & batch) {
+ batch.n_tokens = 0;
+}
+
+void llama_batch_add(
+ struct llama_batch & batch,
+ llama_token id,
+ llama_pos pos,
+ const std::vector<llama_seq_id> & seq_ids,
+ bool logits) {
+ batch.token [batch.n_tokens] = id;
+ batch.pos [batch.n_tokens] = pos,
+ batch.n_seq_id[batch.n_tokens] = seq_ids.size();
+ for (size_t i = 0; i < seq_ids.size(); ++i) {
+ batch.seq_id[batch.n_tokens][i] = seq_ids[i];
+ }
+ batch.logits [batch.n_tokens] = logits;
+
+ batch.n_tokens++;
+}
+
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto mparams = llama_model_params_from_gpt_params(params);
diff --git a/common/common.h b/common/common.h
index 08c60323..65d3d20c 100644
--- a/common/common.h
+++ b/common/common.h
@@ -70,6 +70,7 @@ struct gpt_params {
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
+ // TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
@@ -124,10 +125,23 @@ void process_escapes(std::string& input);
// Model utils
//
+// TODO: avoid tuplue, use struct
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
-struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
+
+struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
+// Batch utils
+
+void llama_batch_clear(struct llama_batch & batch);
+
+void llama_batch_add(
+ struct llama_batch & batch,
+ llama_token id,
+ llama_pos pos,
+ const std::vector<llama_seq_id> & seq_ids,
+ bool logits);
+
//
// Vocab utils
//
diff --git a/common/log.h b/common/log.h
index b8953fdc..70e7e4ca 100644
--- a/common/log.h
+++ b/common/log.h
@@ -579,38 +579,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
return buf.str();
}
-#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
- [&tokens, &ctx]() \
- { \
- std::stringstream buf; \
- buf << "[ "; \
- \
- bool first = true; \
- for (const auto &token : tokens) \
- { \
- if (!first) \
- buf << ", "; \
- else \
- first = false; \
- \
- auto detokenized = llama_token_to_piece(ctx, token); \
- \
- detokenized.erase( \
- std::remove_if( \
- detokenized.begin(), \
- detokenized.end(), \
- [](const unsigned char c) { return !std::isprint(c); }), \
- detokenized.end()); \
- \
- buf \
- << "'" << detokenized << "'" \
- << ":" << std::to_string(token); \
- } \
- buf << " ]"; \
- \
- return buf.str(); \
- }() \
- .c_str()
+template <typename C, typename T>
+inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
+{
+ std::stringstream buf;
+ buf << "[ ";
+
+ bool first = true;
+ for (const auto &token : tokens)
+ {
+ if (!first) {
+ buf << ", ";
+ } else {
+ first = false;
+ }
+
+ auto detokenized = llama_token_to_piece(ctx, token);
+
+ detokenized.erase(
+ std::remove_if(
+ detokenized.begin(),
+ detokenized.end(),
+ [](const unsigned char c) { return !std::isprint(c); }),
+ detokenized.end());
+
+ buf
+ << "'" << detokenized << "'"
+ << ":" << std::to_string(token);
+ }
+ buf << " ]";
+
+ return buf.str();
+}
+
+template <typename C, typename B>
+inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
+{
+ std::stringstream buf;
+ buf << "[ ";
+
+ bool first = true;
+ for (int i = 0; i < batch.n_tokens; ++i)
+ {
+ if (!first) {
+ buf << ", ";
+ } else {
+ first = false;
+ }
+
+ auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
+
+ detokenized.erase(
+ std::remove_if(
+ detokenized.begin(),
+ detokenized.end(),
+ [](const unsigned char c) { return !std::isprint(c); }),
+ detokenized.end());
+
+ buf
+ << "\n" << std::to_string(i)
+ << ":token '" << detokenized << "'"
+ << ":pos " << std::to_string(batch.pos[i])
+ << ":n_seq_id " << std::to_string(batch.n_seq_id[i])
+ << ":seq_id " << std::to_string(batch.seq_id[i][0])
+ << ":logits " << std::to_string(batch.logits[i]);
+ }
+ buf << " ]";
+
+ return buf.str();
+}
#ifdef LOG_DISABLE_LOGS
diff --git a/common/sampling.cpp b/common/sampling.cpp
index 8ce41945..0b246658 100644
--- a/common/sampling.cpp
+++ b/common/sampling.cpp
@@ -1,64 +1,81 @@
#include "sampling.h"
-llama_sampling_context::~llama_sampling_context() {
- for (auto & it : sequence_contexts) {
- if (it.second.grammar != NULL) {
- llama_grammar_free(it.second.grammar);
- it.second.grammar = NULL;
+struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
+ struct llama_sampling_context * result = new llama_sampling_context();
+
+ result->params = params.sampling_params;
+ result->grammar = nullptr;
+
+ // if there is a grammar, parse it
+ if (!params.grammar.empty()) {
+ result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
+
+ // will be empty (default) if there are parse errors
+ if (result->parsed_grammar.rules.empty()) {
+ fprintf(stderr, "%s: failed to parse grammar\n", __func__);
+ return nullptr;
}
+
+ std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
+
+ result->grammar = llama_grammar_init(
+ grammar_rules.data(),
+ grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
}
+
+ result->prev.resize(params.n_ctx);
+
+ return result;
}
-llama_sampling_context llama_sampling_context_init(
- const struct gpt_params & params,
- llama_grammar * grammar) {
- llama_sampling_context result;
+void llama_sampling_free(struct llama_sampling_context * ctx) {
+ if (ctx->grammar != NULL) {
+ llama_grammar_free(ctx->grammar);
+ }
- result.params = params.sampling_params;
- result.grammar = grammar;
- return result;
+ delete ctx;
}
-// Note: Creates the context if it doesn't exist, so this always return something.
-llama_sampler_sequence_context & llama_sampling_get_sequence_context(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq) {
- const auto it = ctx_sampling.sequence_contexts.find(seq);
- if (it != ctx_sampling.sequence_contexts.end()) {
- return it->second;
+void llama_sampling_reset(llama_sampling_context * ctx) {
+ if (ctx->grammar != NULL) {
+ llama_grammar_free(ctx->grammar);
}
- llama_sampler_sequence_context new_ctx = {
- 2.0f * ctx_sampling.params.mirostat_tau,
- ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
- };
- return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
+
+ if (!ctx->parsed_grammar.rules.empty()) {
+ std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
+
+ ctx->grammar = llama_grammar_init(
+ grammar_rules.data(),
+ grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
+ }
+
+ std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
+ ctx->cur.clear();
}
-bool llama_sampling_context_reset(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq) {
- const auto it = ctx_sampling.sequence_contexts.find(seq);
- if (it == ctx_sampling.sequence_contexts.end()) return false;
- if (it->second.grammar != NULL) {
- llama_grammar_free(it->second.grammar);
- it->second.grammar = NULL;
+void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
+ if (dst->grammar) {
+ llama_grammar_free(dst->grammar);
+ dst->grammar = nullptr;
}
- ctx_sampling.sequence_contexts.erase(it);
- return true;
+
+ if (src->grammar) {
+ dst->grammar = llama_grammar_copy(src->grammar);
+ }
+
+ dst->prev = src->prev;
}
llama_token llama_sampling_sample(
- struct llama_context * ctx,
- struct llama_context * ctx_guidance,
- struct llama_sampling_context & ctx_sampling,
- const std::vector<llama_token> & last_tokens,
- std::vector<llama_token_data> & candidates,
- const int idx,
- llama_seq_id seq) {
- const int n_ctx = llama_n_ctx(ctx);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
-
- const llama_sampling_params & params = ctx_sampling.params;
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ struct llama_context * ctx_cfg,
+ const int idx) {
+ const int n_ctx = llama_n_ctx(ctx_main);
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
+
+ const llama_sampling_params & params = ctx_sampling->params;
+
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
@@ -73,41 +90,45 @@ llama_token llama_sampling_sample(
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
+ auto & prev = ctx_sampling->prev;
+ auto & cur = ctx_sampling->cur;
+
llama_token id = 0;
- float * logits = llama_get_logits_ith(ctx, idx);
+ float * logits = llama_get_logits_ith(ctx_main, idx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
- candidates.clear();
+ cur.clear();
+
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
- llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
+ llama_token_data_array cur_p = { cur.data(), cur.size(), false };
- if (ctx_guidance) {
- llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
+ if (ctx_cfg) {
+ llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
}
// apply penalties
- if (!last_tokens.empty()) {
- const float nl_logit = logits[llama_token_nl(ctx)];
- const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
+ if (!prev.empty()) {
+ const float nl_logit = logits[llama_token_nl(ctx_main)];
+ const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
+ llama_sample_repetition_penalty(ctx_main, &cur_p,
+ prev.data() + prev.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
- last_tokens.data() + last_tokens.size() - last_n_repeat,
+ llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
+ prev.data() + prev.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
- if (cur_p.data[idx].id == llama_token_nl(ctx)) {
+ if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
cur_p.data[idx].logit = nl_logit;
break;
}
@@ -115,52 +136,58 @@ llama_token llama_sampling_sample(
}
}
- llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
-
- if (ctx_seq.grammar != NULL) {
- llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
+ if (ctx_sampling->grammar != NULL) {
+ llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp <= 0) {
// Greedy sampling
- id = llama_sample_token_greedy(ctx, &cur_p);
+ id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
+ llama_sample_temp(ctx_main, &cur_p, temp);
+ id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
- llama_sample_temp(ctx, &cur_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
+ llama_sample_temp(ctx_main, &cur_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// Temperature sampling
size_t min_keep = std::max(1, params.n_probs);
- llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
- llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
- llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
- llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
- llama_sample_temp(ctx, &cur_p, temp);
-
- {
- const int n_top = 10;
- LOG("top %d candidates:\n", n_top);
-
- for (int i = 0; i < n_top; i++) {
- const llama_token id = cur_p.data[i].id;
- (void)id; // To avoid a warning that id is unused when logging is disabled.
- LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
- }
- }
-
- id = llama_sample_token(ctx, &cur_p);
-
- LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
+ llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
+ llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
+ llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
+ llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
+ llama_sample_temp (ctx_main, &cur_p, temp);
+
+ id = llama_sample_token(ctx_main, &cur_p);
+
+ //{
+ // const int n_top = 10;
+ // LOG("top %d candidates:\n", n_top);
+
+ // for (int i = 0; i < n_top; i++) {
+ // const llama_token id = cur_p.data[i].id;
+ // (void)id; // To avoid a warning that id is unused when logging is disabled.
+ // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
+ // }
+ //}
+
+ LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
- if (ctx_seq.grammar != NULL) {
- llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
- }
-
return id;
}
+
+void llama_sampling_accept(
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ llama_token id) {
+ ctx_sampling->prev.erase(ctx_sampling->prev.begin());
+ ctx_sampling->prev.push_back(id);
+
+ if (ctx_sampling->grammar != NULL) {
+ llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
+ }
+}
diff --git a/common/sampling.h b/common/sampling.h
index 0aab5d03..50afcbc1 100644
--- a/common/sampling.h
+++ b/common/sampling.h
@@ -2,6 +2,8 @@
#include "llama.h"
+#include "grammar-parser.h"
+
#include <string>
#include <vector>
#include <unordered_map>
@@ -34,75 +36,64 @@ typedef struct llama_sampling_params {
} llama_sampling_params;
-// per-sequence sampler context
-typedef struct llama_sampler_sequence_context {
- float mirostat_mu; // mirostat sampler state
- llama_grammar * grammar;
-} llama_sampler_sequence_context;
-
// general sampler context
-typedef struct llama_sampling_context {
- ~llama_sampling_context();
-
- // parameters that will be used for sampling and when creating
- // new llama_sampler_sequence_context instances
+// TODO: move to llama.h
+struct llama_sampling_context {
+ // parameters that will be used for sampling
llama_sampling_params params;
- // map of sequence ids to sampler contexts
- std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
+ // mirostat sampler state
+ float mirostat_mu;
- // when non-NULL, new instances of llama_sampler_sequence_context
- // will get a copy of the grammar here
- // note: only the pointer is stored here, it is not a copy of
- // the grammar and shouldn't be freed
llama_grammar * grammar;
-} llama_sampling_context;
+
+ // internal
+ grammar_parser::parse_state parsed_grammar;
+
+ // TODO: replace with ring-buffer
+ std::vector<llama_token> prev;
+ std::vector<llama_token_data> cur;
+};
#include "common.h"
// Create a new sampling context instance.
-llama_sampling_context llama_sampling_context_init(
- const struct gpt_params & params,
- llama_grammar * grammar = NULL);
-
-// Fetches the sampler context for the specified sequence id (defaults to 0).
-// If the context for that sequence id doesn't already exist, it will be created with
-// default values based on the parameters in the ctx_sampling argument.
-llama_sampler_sequence_context & llama_sampling_get_sequence_context(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq = 0);
-
-// Reset the sampler context for the supplied sequence id (defaults to 0).
-// This is necessary to reuse a sequence id or free memory used by sequences
-// that are no longer required.
-bool llama_sampling_context_reset(
- llama_sampling_context & ctx_sampling,
- const llama_seq_id seq = 0);
+struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params);
+
+void llama_sampling_free(struct llama_sampling_context * ctx);
+
+// Reset the sampler context
+// - clear prev tokens
+// - reset grammar
+void llama_sampling_reset(llama_sampling_context * ctx);
+
+// Copy the sampler context
+void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
-// llama_sampling_context_reset when a sequence ends
+// llama_sampling_reset when a sequence ends
//
// required:
-// - ctx: context to use for sampling
+// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
//
// optional:
-// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
-// - last_tokens: needed for repetition penalty, ignore if empty
-// - idx: sample from llama_get_logits_ith(ctx, idx)
-// - seq: sequence id to associate sampler state with
+// - ctx_cfg: context to use for classifier-free guidance
+// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sampling_sample(
- struct llama_context * ctx,
- struct llama_context * ctx_guidance,
- struct llama_sampling_context & ctx_sampling,
- const std::vector<llama_token> & last_tokens,
- std::vector<llama_token_data> & candidates,
- const int idx = 0,
- llama_seq_id seq = 0);
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ struct llama_context * ctx_cfg,
+ int idx = 0);
+
+void llama_sampling_accept(
+ struct llama_sampling_context * ctx_sampling,
+ struct llama_context * ctx_main,
+ llama_token id);