summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2024-02-25 12:09:09 +0200
committerGitHub <noreply@github.com>2024-02-25 12:09:09 +0200
commitab336a9d5e5352ecdcdf4c12d2d54cf4ef82ce31 (patch)
tree5694ecb0647b10a6377a273737b63bb025dc961d /common
parent69917dfa55674c608360638bb4d6a12a315e2810 (diff)
code : normalize enum names (#5697)
* coda : normalize enum names ggml-ci * code : cont * code : cont
Diffstat (limited to 'common')
-rw-r--r--common/common.cpp18
-rw-r--r--common/common.h4
-rw-r--r--common/train.cpp10
3 files changed, 16 insertions, 16 deletions
diff --git a/common/common.cpp b/common/common.cpp
index 10ef1182..ec596f5a 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
std::string value(argv[i]);
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
+ /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
+ else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
+ else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
@@ -630,11 +630,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
}
std::string arg_next = argv[i];
if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_NONE;
+ params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_LAYER;
+ params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
- params.split_mode = LLAMA_SPLIT_ROW;
+ params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
@@ -837,15 +837,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_INT;
+ kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
+ kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
+ kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
diff --git a/common/common.h b/common/common.h
index 935771d4..3e21579b 100644
--- a/common/common.h
+++ b/common/common.h
@@ -61,7 +61,7 @@ struct gpt_params {
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
- llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
+ llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
@@ -75,7 +75,7 @@ struct gpt_params {
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
- int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
+ int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
// // sampling parameters
diff --git a/common/train.cpp b/common/train.cpp
index e4c3d5df..0dbfd24d 100644
--- a/common/train.cpp
+++ b/common/train.cpp
@@ -31,7 +31,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
- state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
+ state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
@@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
std::string opt_type;
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
- opt->params.type = GGML_OPT_ADAM;
+ opt->params.type = GGML_OPT_TYPE_ADAM;
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
@@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
- opt->params.type = GGML_OPT_LBFGS;
+ opt->params.type = GGML_OPT_TYPE_LBFGS;
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
@@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
switch (opt->params.type) {
- case GGML_OPT_ADAM:
+ case GGML_OPT_TYPE_ADAM:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
@@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_add_tensor(fctx, opt->adam.pf);
}
} break;
- case GGML_OPT_LBFGS:
+ case GGML_OPT_TYPE_LBFGS:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);