diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-06-03 11:32:03 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-06-03 11:32:03 +0300 |
commit | ccb265c01676aad9ae5860ba50e74e61dfcd1cf8 (patch) | |
tree | 8e2d9303bd091c4d0015fce8402162346d998cca /common | |
parent | 4f8b05a0d76e6c5e47fe1f6c7bd079e0fe95dbba (diff) |
Adding the XTC sampler (#486)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'common')
-rw-r--r-- | common/common.cpp | 14 | ||||
-rw-r--r-- | common/sampling.cpp | 13 | ||||
-rw-r--r-- | common/sampling.h | 3 |
3 files changed, 28 insertions, 2 deletions
diff --git a/common/common.cpp b/common/common.cpp index 2df8d4d4..cefbf63f 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -649,6 +649,16 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa sparams.mirostat_tau = std::stof(argv[i]); return true; } + if (arg == "--xtc-probability") { + CHECK_ARG + sparams.xtc_probability = std::stof(argv[i]); + return true; + } + if (arg == "--xtc-threshold") { + CHECK_ARG + sparams.xtc_threshold = std::stof(argv[i]); + return true; + } if (arg == "--cfg-negative-prompt") { CHECK_ARG sparams.cfg_negative_prompt = argv[i]; @@ -1635,6 +1645,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat }); options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta }); options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau }); + options.push_back({ "*", " --xtc-probability p", "xtc probability (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_probability }); + options.push_back({ "*", " --xtc-threshold t", "xtc threshold (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_threshold}); options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" }); @@ -3396,6 +3408,8 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); + fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability); + fprintf(stream, "xtc_threshold: %f # default: 0.0\n", sparams.xtc_threshold); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); diff --git a/common/sampling.cpp b/common/sampling.cpp index 079e4051..84691d93 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -121,10 +121,12 @@ std::string llama_sampling_print(const llama_sampling_params & params) { snprintf(result, sizeof(result), "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n" "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n" - "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f", + "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f\n" + "\txtc_probability = %.3f, xtc_threshold = %.3f", params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present, params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp, - params.mirostat, params.mirostat_eta, params.mirostat_tau); + params.mirostat, params.mirostat_eta, params.mirostat_tau, + params.xtc_probability, params.xtc_threshold); return std::string(result); } @@ -153,6 +155,7 @@ std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) { case llama_sampler_type::TOP_P: return "top_p"; case llama_sampler_type::MIN_P: return "min_p"; case llama_sampler_type::TEMPERATURE: return "temperature"; + case llama_sampler_type::XTC : return "xtc"; default : return ""; } } @@ -164,6 +167,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto {"typical_p", llama_sampler_type::TYPICAL_P}, {"min_p", llama_sampler_type::MIN_P}, {"tfs_z", llama_sampler_type::TFS_Z}, + {"xtc", llama_sampler_type::XTC}, {"temperature", llama_sampler_type::TEMPERATURE} }; @@ -178,6 +182,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto {"min-p", llama_sampler_type::MIN_P}, {"tfs-z", llama_sampler_type::TFS_Z}, {"tfs", llama_sampler_type::TFS_Z}, + {"xtc", llama_sampler_type::XTC}, {"temp", llama_sampler_type::TEMPERATURE} }; @@ -212,6 +217,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::strin {'y', llama_sampler_type::TYPICAL_P}, {'m', llama_sampler_type::MIN_P}, {'f', llama_sampler_type::TFS_Z}, + {'x', llama_sampler_type::XTC}, {'t', llama_sampler_type::TEMPERATURE} }; @@ -240,6 +246,8 @@ static void sampler_queue( const float min_p = params.min_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; + const float xtc_probability = params.xtc_probability; + const float xtc_threshold = params.xtc_threshold; const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence; for (auto sampler_type : samplers_sequence) { @@ -249,6 +257,7 @@ static void sampler_queue( case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break; case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break; case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break; + case llama_sampler_type::XTC : llama_sample_xtc (ctx_main, &cur_p, xtc_probability, xtc_threshold, min_keep); break; case llama_sampler_type::TEMPERATURE: if (dynatemp_range > 0) { float dynatemp_min = std::max(0.0f, temp - dynatemp_range); diff --git a/common/sampling.h b/common/sampling.h index eeaa53b8..163cdfca 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -15,6 +15,7 @@ enum class llama_sampler_type : char { TOP_P = 'p', MIN_P = 'm', TFS_Z = 'f', + XTC = 'x', TYPICAL_P = 'y', TEMPERATURE = 't' }; @@ -39,6 +40,8 @@ typedef struct llama_sampling_params { int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 float mirostat_tau = 5.00f; // target entropy float mirostat_eta = 0.10f; // learning rate + float xtc_probability = 0.0f; // xtc probability + float xtc_threshold = 1.0f; // xtc threashold, disabled if > 0.5 bool penalize_nl = false; // consider newlines as a repeatable token uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context |