summaryrefslogtreecommitdiff
path: root/convert-hf-to-gguf.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /convert-hf-to-gguf.py
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'convert-hf-to-gguf.py')
-rwxr-xr-xconvert-hf-to-gguf.py2946
1 files changed, 0 insertions, 2946 deletions
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
deleted file mode 100755
index ebd36a9b..00000000
--- a/convert-hf-to-gguf.py
+++ /dev/null
@@ -1,2946 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-from __future__ import annotations
-
-import logging
-import argparse
-import contextlib
-import json
-import os
-import re
-import sys
-from enum import IntEnum
-from pathlib import Path
-from hashlib import sha256
-from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
-
-import math
-import numpy as np
-import torch
-
-if TYPE_CHECKING:
- from torch import Tensor
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-logger = logging.getLogger("hf-to-gguf")
-
-
-###### MODEL DEFINITIONS ######
-
-class SentencePieceTokenTypes(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
-
-
-AnyModel = TypeVar("AnyModel", bound="type[Model]")
-
-
-class Model:
- _model_classes: dict[str, type[Model]] = {}
-
- dir_model: Path
- ftype: gguf.LlamaFileType
- is_big_endian: bool
- endianess: gguf.GGUFEndian
- use_temp_file: bool
- lazy: bool
- model_name: str | None
- part_names: list[str]
- is_safetensors: bool
- hparams: dict[str, Any]
- block_count: int
- tensor_map: gguf.TensorNameMap
- tensor_names: set[str] | None
- fname_out: Path
- gguf_writer: gguf.GGUFWriter
-
- # subclasses should define this!
- model_arch: gguf.MODEL_ARCH
-
- def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None):
- if type(self) is Model:
- raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
- self.dir_model = dir_model
- self.ftype = ftype
- self.is_big_endian = is_big_endian
- self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
- self.use_temp_file = use_temp_file
- self.lazy = not eager
- self.model_name = model_name
- self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
- self.is_safetensors = len(self.part_names) > 0
- if not self.is_safetensors:
- self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
- self.hparams = Model.load_hparams(self.dir_model)
- self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
- self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
- self.tensor_names = None
- if self.ftype == gguf.LlamaFileType.GUESSED:
- # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
- _, first_tensor = next(self.get_tensors())
- if first_tensor.dtype == torch.float16:
- logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
- self.ftype = gguf.LlamaFileType.MOSTLY_F16
- else:
- logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
- self.ftype = gguf.LlamaFileType.MOSTLY_BF16
- ftype_up: str = self.ftype.name.partition("_")[2].upper()
- ftype_lw: str = ftype_up.lower()
- # allow templating the file name with the output ftype, useful with the "auto" ftype
- self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
- self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
-
- @classmethod
- def __init_subclass__(cls):
- # can't use an abstract property, because overriding it without type errors
- # would require using decorated functions instead of simply defining the property
- if "model_arch" not in cls.__dict__:
- raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
-
- def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
- key = next((k for k in keys if k in self.hparams), None)
- if key is not None:
- return self.hparams[key]
- if optional:
- return None
- raise KeyError(f"could not find any of: {keys}")
-
- def set_vocab(self):
- self._set_vocab_gpt2()
-
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- tensor_names_from_parts: set[str] = set()
-
- if len(self.part_names) > 1:
- self.tensor_names = set()
- index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
- index_name += ".index.json"
- logger.info(f"gguf: loading model weight map from '{index_name}'")
- with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
- index: dict[str, Any] = json.load(f)
- weight_map = index.get("weight_map")
- if weight_map is None or not isinstance(weight_map, dict):
- raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
- self.tensor_names.update(weight_map.keys())
- else:
- self.tensor_names = tensor_names_from_parts
-
- for part_name in self.part_names:
- logger.info(f"gguf: loading model part '{part_name}'")
- ctx: ContextManager[Any]
- if self.is_safetensors:
- from safetensors import safe_open
- ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
- else:
- ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
-
- with ctx as model_part:
- tensor_names_from_parts.update(model_part.keys())
-
- for name in model_part.keys():
- data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
- if self.lazy:
- data = LazyTorchTensor.from_eager(data)
- yield name, data
-
- # only verify tensor name presence; it doesn't matter if they are not in the right files
- if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
- raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
-
- def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
- if key not in gguf.MODEL_TENSORS[self.model_arch]:
- raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
- name: str = gguf.TENSOR_NAMES[key]
- if "{bid}" in name:
- assert bid is not None
- name = name.format(bid=bid)
- return name + suffix
-
- def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
- if key not in gguf.MODEL_TENSORS[self.model_arch]:
- return False
- key_name: str = gguf.TENSOR_NAMES[key]
- if "{bid}" in key_name:
- if bid is None:
- return False
- key_name = key_name.format(bid=bid)
- else:
- if bid is not None:
- return False
- return name == (key_name + suffix)
-
- def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
- new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
- if new_name is None:
- raise ValueError(f"Can not map tensor {name!r}")
- return new_name
-
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_block_count(self.block_count)
-
- if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
- self.gguf_writer.add_context_length(n_ctx)
- logger.info(f"gguf: context length = {n_ctx}")
-
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- self.gguf_writer.add_embedding_length(n_embd)
- logger.info(f"gguf: embedding length = {n_embd}")
-
- if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
- self.gguf_writer.add_feed_forward_length(n_ff)
- logger.info(f"gguf: feed forward length = {n_ff}")
-
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- self.gguf_writer.add_head_count(n_head)
- logger.info(f"gguf: head count = {n_head}")
-
- if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
- self.gguf_writer.add_head_count_kv(n_head_kv)
- logger.info(f"gguf: key-value head count = {n_head_kv}")
-
- if (rope_theta := self.hparams.get("rope_theta")) is not None:
- self.gguf_writer.add_rope_freq_base(rope_theta)
- logger.info(f"gguf: rope theta = {rope_theta}")
- if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
- self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
- logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
- if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
- self.gguf_writer.add_layer_norm_eps(f_norm_eps)
- logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
- if (n_experts := self.hparams.get("num_local_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- logger.info(f"gguf: expert count = {n_experts}")
- if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
- self.gguf_writer.add_expert_used_count(n_experts_used)
- logger.info(f"gguf: experts used count = {n_experts_used}")
-
- self.gguf_writer.add_file_type(self.ftype)
- logger.info(f"gguf: file type = {self.ftype}")
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
- del name, new_name, bid, n_dims # unused
-
- return False
-
- def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
- del name, new_name, bid, n_dims # unused
-
- return False
-
- def write_tensors(self):
- max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
-
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
- continue
-
- old_dtype = data_torch.dtype
-
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
-
- # use the first number-like part of the tensor name as the block id
- bid = None
- for part in name.split("."):
- if part.isdecimal():
- bid = int(part)
- break
-
- for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
- data: np.ndarray = data # type hint
- n_dims = len(data.shape)
- data_dtype = data.dtype
- data_qtype: gguf.GGMLQuantizationType | None = None
-
- # when both are True, f32 should win
- extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
- extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
-
- # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
- # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
- extra_f32 = any(cond for cond in (
- extra_f32,
- n_dims == 1,
- new_name.endswith("_norm.weight"),
- ))
-
- # Some tensor types are always in float32
- extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
- gguf.MODEL_TENSOR.FFN_GATE_INP,
- gguf.MODEL_TENSOR.POS_EMBD,
- gguf.MODEL_TENSOR.TOKEN_TYPES,
- ))
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- extra_f16 = any(cond for cond in (
- extra_f16,
- (name.endswith(".weight") and n_dims >= 2),
- ))
-
- if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
- if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
- data = gguf.quantize_bf16(data)
- assert data.dtype == np.int16
- data_qtype = gguf.GGMLQuantizationType.BF16
-
- elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
- data = gguf.quantize_q8_0(data)
- assert data.dtype == np.uint8
- data_qtype = gguf.GGMLQuantizationType.Q8_0
-
- else: # default to float16 for quantized tensors
- if data_dtype != np.float16:
- data = data.astype(np.float16)
- data_qtype = gguf.GGMLQuantizationType.F16
-
- if data_qtype is None: # by default, convert to float32
- if data_dtype != np.float32:
- data = data.astype(np.float32)
- data_qtype = gguf.GGMLQuantizationType.F32
-
- shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
-
- # reverse shape to make it similar to the internal ggml dimension order
- shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
-
- # n_dims is implicit in the shape
- logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
-
- self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
-
- def write(self):
- self.write_tensors()
- self.gguf_writer.write_header_to_file(self.fname_out)
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.write_tensors_to_file(progress=True)
- self.gguf_writer.close()
-
- def write_vocab(self):
- self.gguf_writer.write_header_to_file(self.fname_out)
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.close()
-
- @staticmethod
- def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
- part_names: list[str] = []
- for filename in os.listdir(dir_model):
- if filename.startswith(prefix) and filename.endswith(suffix):
- part_names.append(filename)
-
- part_names.sort()
-
- return part_names
-
- @staticmethod
- def load_hparams(dir_model: Path):
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- return json.load(f)
-
- @classmethod
- def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
- assert names
-
- def func(modelcls: AnyModel) -> AnyModel:
- for name in names:
- cls._model_classes[name] = modelcls
- return modelcls
- return func
-
- @classmethod
- def from_model_architecture(cls, arch: str) -> type[Model]:
- try:
- return cls._model_classes[arch]
- except KeyError:
- raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
-
- # used for GPT-2 BPE and WordPiece vocabs
- def get_vocab_base(self) -> tuple[list[str], list[int], str]:
- tokens: list[str] = []
- toktypes: list[int] = []
-
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
- vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
-
- tokpre = self.get_vocab_base_pre(tokenizer)
-
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
-
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
- return tokens, toktypes, tokpre
-
- # NOTE: this function is generated by convert-hf-to-gguf-update.py
- # do not modify it manually!
- # ref: https://github.com/ggerganov/llama.cpp/pull/6920
- # Marker: Start get_vocab_base_pre
- def get_vocab_base_pre(self, tokenizer) -> str:
- # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
- # is specific for the BPE pre-tokenizer used by the model
- # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
- # use in llama.cpp to implement the same pre-tokenizer
-
- chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
-
- chktok = tokenizer.encode(chktxt)
- chkhsh = sha256(str(chktok).encode()).hexdigest()
-
- logger.debug(f"chktok: {chktok}")
- logger.debug(f"chkhsh: {chkhsh}")
-
- res = None
-
- # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
- # or pull the latest version of the model from Huggingface
- # don't edit the hashes manually!
- if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
- # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
- res = "llama-bpe"
- if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
- # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
- res = "deepseek-llm"
- if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
- # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
- res = "deepseek-coder"
- if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
- # ref: https://huggingface.co/tiiuae/falcon-7b
- res = "falcon"
- if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
- # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
- res = "bert-bge"
- if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
- # ref: https://huggingface.co/mosaicml/mpt-7b
- res = "mpt"
- if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
- # ref: https://huggingface.co/bigcode/starcoder2-3b
- res = "starcoder"
- if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
- # ref: https://huggingface.co/openai-community/gpt2
- res = "gpt-2"
- if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
- # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
- res = "stablelm2"
- if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
- # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
- res = "refact"
- if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
- # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
- res = "command-r"
- if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
- # ref: https://huggingface.co/Qwen/Qwen1.5-7B
- res = "qwen2"
- if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
- # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
- res = "olmo"
- if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
- # ref: https://huggingface.co/databricks/dbrx-base
- res = "dbrx"
- if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
- res = "jina-v2-en"
- if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
- res = "jina-v2-es"
- if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
- res = "jina-v2-de"
- if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
- # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
- res = "smaug-bpe"
- if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
- # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
- res = "poro-chat"
- if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
- # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
- res = "jina-v2-code"
-
- if res is None:
- logger.warning("\n")
- logger.warning("**************************************************************************************")
- logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
- logger.warning("** There are 2 possible reasons for this:")
- logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
- logger.warning("** - the pre-tokenization config has changed upstream")
- logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
- logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
- logger.warning("**")
- logger.warning(f"** chkhsh: {chkhsh}")
- logger.warning("**************************************************************************************")
- logger.warning("\n")
- raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
-
- logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
- logger.debug(f"chkhsh: {chkhsh}")
-
- return res
- # Marker: End get_vocab_base_pre
-
- def _set_vocab_gpt2(self) -> None:
- tokens, toktypes, tokpre = self.get_vocab_base()
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def _set_vocab_qwen(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[str] = []
- toktypes: list[int] = []
-
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams["vocab_size"]
- assert max(tokenizer.get_vocab().values()) < vocab_size
-
- tokpre = self.get_vocab_base_pre(tokenizer)
-
- merges = []
- vocab = {}
- mergeable_ranks = tokenizer.mergeable_ranks
- for token, rank in mergeable_ranks.items():
- vocab[QwenModel.token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
- assert len(merged) == 2
- merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
-
- # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
- added_vocab = tokenizer.special_tokens
- reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
-
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
- special_vocab.merges = merges
- # only add special tokens when they were not already loaded from config.json
- if len(special_vocab.special_token_ids) == 0:
- special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
- # this one is usually not in config.json anyway
- special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def _set_vocab_sentencepiece(self):
- from sentencepiece import SentencePieceProcessor
-
- tokenizer_path = self.dir_model / 'tokenizer.model'
-
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
-
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
-
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
-
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
-
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
-
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
-
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
-
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
-
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if (token_id >= vocab_size):
- logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
-
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
-
- if vocab_size > len(tokens):
- pad_count = vocab_size - len(tokens)
- logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
- for i in range(1, pad_count + 1):
- tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.UNUSED)
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def _set_vocab_llama_hf(self):
- vocab = gguf.LlamaHfVocab(self.dir_model)
- tokens = []
- scores = []
- toktypes = []
-
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- assert len(tokens) == vocab.vocab_size
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
-
-@Model.register("GPTNeoXForCausalLM")
-class GPTNeoXModel(Model):
- model_arch = gguf.MODEL_ARCH.GPTNEOX
-
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
-
- tensors: list[tuple[str, Tensor]] = []
-
- if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
- data_torch = torch.cat(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.weight")
- elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
- qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
- data_torch = torch.cat(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.bias")
-
- tensors.append((self.map_tensor_name(name), data_torch))
-
- return tensors
-
-
-@Model.register("BloomForCausalLM")
-class BloomModel(Model):
- model_arch = gguf.MODEL_ARCH.BLOOM
-
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Bloom")
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(4 * n_embed)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
-
- name = re.sub(r'transformer\.', '', name)
-
- tensors: list[tuple[str, Tensor]] = []
-
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
- data_torch = torch.cat(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
- data_torch = torch.cat(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- dim=0,
- )
- logger.info("re-format attention.linear_qkv.bias")
-
- tensors.append((self.map_tensor_name(name), data_torch))
-
- if name == "word_embeddings.weight":
- assert self.tensor_names is not None
-
- # TODO: tie them at runtime, don't duplicate in the model file
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
-
- return tensors
-
-
-@Model.register("MPTForCausalLM")
-class MPTModel(Model):
- model_arch = gguf.MODEL_ARCH.MPT
-
- def set_vocab(self):
- try:
- self._set_vocab_gpt2()
- except Exception:
- # Fallback for SEA-LION model
- self._set_vocab_sentencepiece()
- self.gguf_writer.add_add_bos_token(False)
- self.gguf_writer.add_pad_token_id(3)
- self.gguf_writer.add_eos_token_id(1)
- self.gguf_writer.add_unk_token_id(0)
-
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layers"]
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
- self.gguf_writer.add_head_count_kv(kv_n_heads)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if self.hparams["attn_config"]["clip_qkv"] is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
- if self.hparams["attn_config"]["alibi"]:
- self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
- else:
- self.gguf_writer.add_max_alibi_bias(0.0)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- if "scales" in name:
- new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
- new_name = new_name.replace("scales", "act.scales")
- else:
- new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
-
- return [(new_name, data_torch)]
-
-
-@Model.register("OrionForCausalLM")
-class OrionModel(Model):
- model_arch = gguf.MODEL_ARCH.ORION
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
-
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
-
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- # note: config provides rms norm but it is actually layer norm
- # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
- self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
-
-
-@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
-class BaichuanModel(Model):
- model_arch = gguf.MODEL_ARCH.BAICHUAN
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
-
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
-
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
-
- tensors: list[tuple[str, Tensor]] = []
-
- if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
- logger.info(f"Unpacking and permuting layer {bid}")
- tensors = [
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
- self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
- self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
- self._reverse_hf_part(data_torch, 2)),
- ]
- else:
- tensors = [(self.map_tensor_name(name), data_torch)]
-
- return tensors
-
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
-
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
-
- def _reverse_hf_permute_part(
- self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
- ) -> Tensor:
- r = weights.shape[0] // 3
- return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
-
- def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
- r = weights.shape[0] // 3
- return weights[r * n_part:r * n_part + r, ...]
-
-
-@Model.register("XverseForCausalLM")
-class XverseModel(Model):
- model_arch = gguf.MODEL_ARCH.XVERSE
-
- def set_vocab(self):
- assert (self.dir_model / "tokenizer.json").is_file()
- dir_model = self.dir_model
- hparams = self.hparams
-
- tokens: list[bytes] = []
- toktypes: list[int] = []
-
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
-
- reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
-
- for token_id in range(vocab_size):
- token_text = reverse_vocab[token_id].encode('utf-8')
- # replace "\x00" to string with length > 0
- if token_text == b"\x00":
- toktype = gguf.TokenType.BYTE # special
- token_text = f"<{token_text}>".encode('utf-8')
- elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
- toktype = gguf.TokenType.BYTE # special
- elif reverse_vocab[token_id] in added_vocab:
- if tokenizer.added_tokens_decoder[token_id].special:
- toktype = gguf.TokenType.CONTROL
- else:
- toktype = gguf.TokenType.USER_DEFINED
- else:
- toktype = gguf.TokenType.NORMAL
-
- tokens.append(token_text)
- toktypes.append(toktype)
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
-
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- raise ValueError("gguf: can not find ctx length parameter.")
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
-
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
-
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith("q_proj.weight"):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
- if name.endswith("k_proj.weight"):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
-
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
-
-
-@Model.register("FalconForCausalLM", "RWForCausalLM")
-class FalconModel(Model):
- model_arch = gguf.MODEL_ARCH.FALCON
-
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
-
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
-
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
-
- self.gguf_writer.add_name("Falcon")
- self.gguf_writer.add_context_length(2048) # not in config.json
- self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
-
- if "query_key_value" in name:
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
- head_dim = self.hparams["hidden_size"] // n_head
-
- qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("GPTBigCodeForCausalLM")
-class StarCoderModel(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER
-
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
-
- self.gguf_writer.add_name("StarCoder")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
-
-@Model.register("GPTRefactForCausalLM")
-class RefactModel(Model):
- model_arch = gguf.MODEL_ARCH.REFACT
-
- def set_vocab(self):
- super().set_vocab()
-
- # TODO: how to determine special FIM tokens automatically?
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
- special_vocab._set_special_token("prefix", 1)
- special_vocab._set_special_token("suffix", 3)
- special_vocab._set_special_token("middle", 2)
- special_vocab._set_special_token("fsep", 4) # is this correct?
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
-
- block_count = self.hparams["n_layer"]
-
- self.gguf_writer.add_name("Refact")
- # refact uses Alibi. So this is from config.json which might be used by training.
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
-
- self.gguf_writer.add_feed_forward_length(ff_dim)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- n_head = self.hparams["n_head"]
- n_head_kv = 1
- head_dim = self.hparams["n_embd"] // n_head
-
- tensors: list[tuple[str, Tensor]] = []
-
- if bid is not None:
- if name == f"transformer.h.{bid}.attn.kv.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
- elif name == f"transformer.h.{bid}.attn.q.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
- elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
-
- if len(tensors) == 0:
- tensors.append((self.map_tensor_name(name), data_torch))
-
- return tensors
-
-
-@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
-class StableLMModel(Model):
- model_arch = gguf.MODEL_ARCH.STABLELM
-
- def set_vocab(self):
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- else:
- # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
- self._set_vocab_qwen()
-
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
- self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
- self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
- self.gguf_writer.add_file_type(self.ftype)
-
- _q_norms: list[dict[str, Tensor]] | None = None
- _k_norms: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams["num_key_value_heads"]
-
- if name.find("q_layernorm.norms") != -1:
- assert bid is not None
-
- if self._q_norms is None:
- self._q_norms = [{} for _ in range(self.block_count)]
-
- self._q_norms[bid][name] = data_torch
-
- if len(self._q_norms[bid]) >= n_head:
- return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
- else:
- return []
-
- if name.find("k_layernorm.norms") != -1:
- assert bid is not None
-
- if self._k_norms is None:
- self._k_norms = [{} for _ in range(self.block_count)]
-
- self._k_norms[bid][name] = data_torch
-
- if len(self._k_norms[bid]) >= n_kv_head:
- return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
- datas: list[Tensor] = []
- # extract the norms in order
- for xid in range(n_head):
- ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
- datas.append(norms[ename])
- del norms[ename]
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
- new_name = self.map_tensor_name(merged_name)
-
- return [(new_name, data_torch)]
-
- def write_tensors(self):
- super().write_tensors()
-
- if self._q_norms is not None or self._k_norms is not None:
- # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
- norms = (
- [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
- ) + (
- [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
- )
- if len(norms) > 0:
- raise ValueError(f"Unprocessed norms: {norms}")
-
-
-@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
-class LlamaModel(Model):
- model_arch = gguf.MODEL_ARCH.LLAMA
-
- def set_vocab(self):
- try:
- self. _set_vocab_sentencepiece()
- except FileNotFoundError:
- try:
- self._set_vocab_llama_hf()
- except (FileNotFoundError, TypeError):
- # Llama 3
- self._set_vocab_gpt2()
-
- # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
- if self.hparams.get("vocab_size", 32000) == 32016:
- special_vocab = gguf.SpecialVocab(
- self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'eot']
- )
- special_vocab._set_special_token("prefix", 32007)
- special_vocab._set_special_token("suffix", 32008)
- special_vocab._set_special_token("middle", 32009)
- special_vocab._set_special_token("eot", 32010)
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
-
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- if "add_prefix_space" in tokenizer_config_json:
- self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
-
- # Apply to granite small models only
- if self.hparams.get("vocab_size", 32000) == 49152:
- self.gguf_writer.add_add_bos_token(False)
-
- @staticmethod
- def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
-
- _experts: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
-
- if name.endswith(("q_proj.weight", "q_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight", "k_proj.bias")):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
-
- # process the experts separately
- if name.find("block_sparse_moe.experts") != -1:
- n_experts = self.hparams["num_local_experts"]
-
- assert bid is not None
-
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
-
- self._experts[bid][name] = data_torch
-
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
-
- # merge the experts into a single 3d tensor
- for wid in ["w1", "w2", "w3"]:
- datas: list[Tensor] = []
-
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
-
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
-
- new_name = self.map_tensor_name(merged_name)
-
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def write_tensors(self):
- super().write_tensors()
-
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
-
-
-@Model.register("BitnetForCausalLM")
-class BitnetModel(Model):
- model_arch = gguf.MODEL_ARCH.BITNET
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
-
- def weight_quant(self, weight):
- dtype = weight.dtype
- weight = weight.float()
- s = 1 / weight.abs().mean().clamp(min=1e-5)
- weight = (weight * s).round().clamp(-1, 1) / s
- scale = weight.abs().max().unsqueeze(0)
- weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
- weight = torch.sign(weight).type(dtype)
- return weight.type(dtype), scale.type(torch.float32)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # transform weight into 1/0/-1 (in fp32)
- if name.endswith(("q_proj.weight", "k_proj.weight", "v_proj.weight",
- "down_proj.weight", "up_proj.weight", "gate_proj.weight",
- "o_proj.weight")):
- weight_torch, scale_torch = self.weight_quant(data_torch)
-
- tensors: list[tuple[str, Tensor]] = []
-
- if name.endswith("q_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid, suffix=".scale"), scale_torch))
- elif name.endswith("k_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid, suffix=".scale"), scale_torch))
- elif name.endswith("v_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid, suffix=".scale"), scale_torch))
- elif name.endswith("o_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid, suffix=".scale"), scale_torch))
- elif name.endswith("up_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid, suffix=".scale"), scale_torch))
- elif name.endswith("down_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid, suffix=".scale"), scale_torch))
- elif name.endswith("gate_proj.weight"):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), weight_torch))
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid, suffix=".scale"), scale_torch))
-
- if len(tensors) == 0:
- tensors.append((self.map_tensor_name(name), data_torch))
-
- return tensors
-
-
-@Model.register("GrokForCausalLM")
-class GrokModel(Model):
- model_arch = gguf.MODEL_ARCH.GROK
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_name("Grok")
-
- _experts: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find(".moe.") != -1:
- n_experts = self.hparams["num_local_experts"]
-
- assert bid is not None
-
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
-
- self._experts[bid][name] = data_torch
-
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
-
- # merge the experts into a single 3d tensor
- for wid in ["linear", "linear_1", "linear_v"]:
- datas: list[Tensor] = []
-
- for xid in range(n_experts):
- ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
-
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
-
- new_name = self.map_tensor_name(merged_name)
-
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("DbrxForCausalLM")
-class DbrxModel(Model):
- model_arch = gguf.MODEL_ARCH.DBRX
-
- def set_gguf_parameters(self):
- ffn_config = self.hparams["ffn_config"]
- attn_config = self.hparams["attn_config"]
- self.gguf_writer.add_name(self.hparams["model_type"])
- self.gguf_writer.add_block_count(self.hparams["n_layers"])
-
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
-
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
-
- self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
-
- self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
- self.gguf_writer.add_file_type(self.ftype)
-
- self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
- self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
-
- self.gguf_writer.add_layer_norm_eps(1e-5)
-
- self.gguf_writer.add_file_type(self.ftype)
- logger.info(f"gguf: file type = {self.ftype}")
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- n_expert = self.hparams["ffn_config"]["moe_num_experts"]
- n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
- n_embd = self.hparams["d_model"]
-
- # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
- # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
- # But llama.cpp moe graph works differently
- # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
- # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
- exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
- "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- experts = False
-
- for exp_tensor_name in exp_tensor_names.keys():
- if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
- experts = True
- data_torch = data_torch.view(n_expert, n_ff, n_embd)
- if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
- data_torch = data_torch.permute(*permute_tensor)
- break
-
- # map tensor names
- # In MoE models the ffn tensors are typically most of the model weights,
- # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
- # Every other model has the weight names ending in .weight,
- # let's assume that is the convention which is not the case for dbrx:
- # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
- new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
-
- return [(new_name, data_torch)]
-
- def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
- del name, new_name, bid # unused
-
- return n_dims > 1
-
-
-@Model.register("MiniCPMForCausalLM")
-class MiniCPMModel(Model):
- model_arch = gguf.MODEL_ARCH.MINICPM
-
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_name("MiniCPM")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def set_vocab(self):
- self._set_vocab_llama_hf()
-
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
-
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
-
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith(("q_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("QWenLMHeadModel")
-class QwenModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN
-
- @staticmethod
- def token_bytes_to_string(b):
- from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
- byte_encoder = bytes_to_unicode()
- return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
-
- @staticmethod
- def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
- parts = [bytes([b]) for b in token]
- while True:
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- if min_rank is None or (max_rank is not None and min_rank >= max_rank):
- break
- assert min_idx is not None
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
- return parts
-
- def set_vocab(self):
- self._set_vocab_qwen()
-
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Qwen")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
-
-@Model.register("Qwen2ForCausalLM")
-class Qwen2Model(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2
-
- def set_vocab(self):
- try:
- self._set_vocab_sentencepiece()
- except FileNotFoundError:
- self._set_vocab_gpt2()
-
-
-@Model.register("Qwen2MoeForCausalLM")
-class Qwen2MoeModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2MOE
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- if (n_experts := self.hparams.get("num_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
- self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
- logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
- if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
- self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
- logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
-
- _experts: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find("experts") != -1:
- n_experts = self.hparams["num_experts"]
- assert bid is not None
-
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
-
- self._experts[bid][name] = data_torch
-
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
-
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
-
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
-
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
-
- new_name = self.map_tensor_name(merged_name)
-
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def write_tensors(self):
- super().write_tensors()
-
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
-
-
-@Model.register("GPT2LMHeadModel")
-class GPT2Model(Model):
- model_arch = gguf.MODEL_ARCH.GPT2
-
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_context_length(self.hparams["n_ctx"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- tensors: list[tuple[str, Tensor]] = []
-
- # we don't need these
- if name.endswith((".attn.bias", ".attn.masked_bias")):
- return tensors
-
- if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
- data_torch = data_torch.transpose(1, 0)
-
- new_name = self.map_tensor_name(name)
-
- tensors.append((new_name, data_torch))
-
- # note: GPT2 output is tied to (same as) wte in original model
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
-
- return tensors
-
-
-@Model.register("PhiForCausalLM")
-class Phi2Model(Model):
- model_arch = gguf.MODEL_ARCH.PHI2
-
- def set_gguf_parameters(self):
- block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
-
- rot_pct = self.find_hparam(["partial_rotary_factor"])
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
-
- self.gguf_writer.add_name("Phi2")
- self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
-
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(4 * n_embd)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_add_bos_token(False)
-
-
-@Model.register("Phi3ForCausalLM")
-class Phi3MiniModel(Model):
- model_arch = gguf.MODEL_ARCH.PHI3
-
- def set_vocab(self):
- from sentencepiece import SentencePieceProcessor
-
- tokenizer_path = self.dir_model / 'tokenizer.model'
-
- if not tokenizer_path.is_file():
- raise ValueError(f'Error: Missing {tokenizer_path}')
-
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
-
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
-
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
-
- for token_id in range(tokenizer.vocab_size()):
-
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
-
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
-
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
-
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
-
- for key in added_tokens_json:
- token_id = added_tokens_json[key]
- if (token_id >= vocab_size):
- logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
-
- tokens[token_id] = key.encode("utf-8")
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
-
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
- for token_id, foken_data in added_tokens_decoder.items():
- token_id = int(token_id)
- token = foken_data["content"].encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
- assert tokens[token_id] == token
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
-
- tokenizer_file = self.dir_model / 'tokenizer.json'
- if tokenizer_file.is_file():
- with open(tokenizer_file, "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- added_tokens = tokenizer_json.get("added_tokens", [])
- for foken_data in added_tokens:
- token_id = int(foken_data["id"])
- token = foken_data["content"].encode("utf-8")
- if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
- assert tokens[token_id] == token
- tokens[token_id] = token
- scores[token_id] = -1000.0
- toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
- if foken_data.get("special"):
- toktypes[token_id] = SentencePieceTokenTypes.CONTROL
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
-
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
- rms_eps = self.find_hparam(["rms_norm_eps"])
- max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
- orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
- rope_dims = n_embd // n_head
-
- self.gguf_writer.add_name("Phi3")
- self.gguf_writer.add_context_length(max_pos_embds)
- self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
- self.gguf_writer.add_rope_dimension_count(rope_dims)
- self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
- self.gguf_writer.add_file_type(self.ftype)
-
- # write rope scaling for long context (128k) model
- rope_scaling = self.find_hparam(['rope_scaling'], True)
- if (rope_scaling is None):
- return
-
- scale = max_pos_embds / orig_max_pos_embds
-
- rope_scaling_type = rope_scaling.get('type', '').lower()
- if len(rope_scaling_type) == 0:
- raise KeyError('Missing the required key rope_scaling.type')
-
- if rope_scaling_type == 'su':
- attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
- elif rope_scaling_type == 'yarn':
- attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
- else:
- raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
-
- self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
-
- long_factors = rope_scaling.get('long_factor', None)
- short_factors = rope_scaling.get('short_factor', None)
-
- if long_factors is None or short_factors is None:
- raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
-
- if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
- raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
-
- self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
- self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
-
-
-@Model.register("PlamoForCausalLM")
-class PlamoModel(Model):
- model_arch = gguf.MODEL_ARCH.PLAMO
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
-
- self.gguf_writer.add_name("PLaMo")
- self.gguf_writer.add_context_length(4096) # not in config.json
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
- self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def shuffle_attn_q_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(8, 5, 128, 5120)
- data_torch = torch.permute(data_torch, (1, 0, 2, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
-
- def shuffle_attn_output_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(5120, 8, 5, 128)
- data_torch = torch.permute(data_torch, (0, 2, 1, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- new_name = self.map_tensor_name(name)
-
- # shuffle for broadcasting of gqa in ggml_mul_mat
- if new_name.endswith("attn_q.weight"):
- data_torch = self.shuffle_attn_q_weight(data_torch)
- elif new_name.endswith("attn_output.weight"):
- data_torch = self.shuffle_attn_output_weight(data_torch)
-
- return [(new_name, data_torch)]
-
-
-@Model.register("CodeShellForCausalLM")
-class CodeShellModel(Model):
- model_arch = gguf.MODEL_ARCH.CODESHELL
-
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
-
- self.gguf_writer.add_name("CodeShell")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_rope_freq_base(10000.0)
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- new_name = self.map_tensor_name(name)
-
- tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
-
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
- assert self.tensor_names is not None
-
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
- # copy tok_embd.weight to output.weight
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
-
- return tensors
-
-
-@Model.register("InternLM2ForCausalLM")
-class InternLM2Model(Model):
- model_arch = gguf.MODEL_ARCH.INTERNLM2
-
- def set_vocab(self):
- # (TODO): Is there a better way?
- # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
- # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
- # recognized as an empty string in C++.
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
-
- tokenizer_path = self.dir_model / 'tokenizer.model'
-
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
-
- if not tokenizer_path.is_file():
- logger.error(f'Error: Missing {tokenizer_path}')
- sys.exit(1)
-
- sentencepiece_model = model.ModelProto()
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
-
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
-
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
-
- for token_id in range(vocab_size):
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
- if text == b"\x00":
- # (TODO): fixme
- # Hack here and replace the \x00 characters.
- logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
- text = "🐉".encode("utf-8")
-
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
-
- for key in added_tokens_json:
- tokens.append(key.encode("utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- old_eos = special_vocab.special_token_ids["eos"]
- if "chat" in os.path.basename(self.dir_model.absolute()):
- # For the chat model, we replace the eos with '<|im_end|>'.
- # TODO: this is a hack, should be fixed
- # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
- special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
- logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
-in chat mode so that the conversation can end normally.")
-
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def _try_get_sft_eos(self, tokenizer):
- unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
- im_end_list = tokenizer.Encode('<|im_end|>')
- eos_token = None
- assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
- if len(unused_145_list) == 1:
- eos_token = unused_145_list[0]
- if len(im_end_list) == 1:
- eos_token = im_end_list[0]
- assert eos_token
- return eos_token
-
- def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
-
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("InternLM2")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- num_heads = self.hparams["num_attention_heads"]
- num_kv_heads = self.hparams["num_key_value_heads"]
- hidden_size = self.hparams["hidden_size"]
- q_per_kv = num_heads // num_kv_heads
- head_dim = hidden_size // num_heads
- num_groups = num_heads // q_per_kv
-
- qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
-
- if re.match(qkv_pattern, name):
- bid = re.findall(qkv_pattern, name)[0]
- qkv = data_torch
- # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
- qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
- q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
- # The model weights of q and k equire additional reshape.
- # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
- q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
- # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
- k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
- # v = rearrange(v, " o g n i -> o (g n i)").T
- v = v.reshape((v.shape[0], -1)).T
- return [
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
- (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
- ]
- else:
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("BertModel", "CamembertModel")
-class BertModel(Model):
- model_arch = gguf.MODEL_ARCH.BERT
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.vocab_size = None
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_causal_attention(False)
-
- # get pooling path
- pooling_path = None
- module_path = self.dir_model / "modules.json"
- if module_path.is_file():
- with open(module_path, encoding="utf-8") as f:
- modules = json.load(f)
- for mod in modules:
- if mod["type"] == "sentence_transformers.models.Pooling":
- pooling_path = mod["path"]
- break
-
- # get pooling type
- if pooling_path is not None:
- with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
- pooling = json.load(f)
- if pooling["pooling_mode_mean_tokens"]:
- pooling_type = gguf.PoolingType.MEAN
- elif pooling["pooling_mode_cls_token"]:
- pooling_type = gguf.PoolingType.CLS
- else:
- raise NotImplementedError("Only MEAN and CLS pooling types supported")
- self.gguf_writer.add_pooling_type(pooling_type)
-
- def set_vocab(self):
- tokens, toktypes, tokpre = self.get_vocab_base()
- self.vocab_size = len(tokens)
-
- # we need this to validate the size of the token_type embeddings
- # though currently we are passing all zeros to the token_type embeddings
- self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
-
- # convert to phantom space vocab
- def phantom(tok):
- if tok.startswith("[") and tok.endswith("]"):
- return tok
- if tok.startswith("##"):
- return tok[2:]
- return "\u2581" + tok
- tokens = list(map(phantom, tokens))
-
- # add vocab to gguf
- self.gguf_writer.add_tokenizer_model("bert")
- self.gguf_writer.add_tokenizer_pre(tokpre)
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
-
- # handle special tokens
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- # we are only using BERT for embeddings so we don't need the pooling layer
- if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
- return [] # we don't need these
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("NomicBertModel")
-class NomicBertModel(BertModel):
- model_arch = gguf.MODEL_ARCH.NOMIC_BERT
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
-
- # the HF config claims n_ctx=8192, but it uses RoPE scaling
- self.hparams["n_ctx"] = 2048
-
- # SwigLU activation
- assert self.hparams["activation_function"] == "swiglu"
- # this doesn't do anything in the HF version
- assert self.hparams["causal"] is False
- # no bias tensors
- assert self.hparams["qkv_proj_bias"] is False
- assert self.hparams["mlp_fc1_bias"] is False
- assert self.hparams["mlp_fc2_bias"] is False
- # norm at end of layer
- assert self.hparams["prenorm"] is False
- # standard RoPE
- assert self.hparams["rotary_emb_fraction"] == 1.0
- assert self.hparams["rotary_emb_interleaved"] is False
- assert self.hparams["rotary_emb_scale_base"] is None
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
-
-
-@Model.register("GemmaForCausalLM")
-class GemmaModel(Model):
- model_arch = gguf.MODEL_ARCH.GEMMA
-
- def set_vocab(self):
- self._set_vocab_sentencepiece()
-
- # TODO: these special tokens should be exported only for the CodeGemma family
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
- special_vocab._set_special_token("prefix", 67)
- special_vocab._set_special_token("suffix", 69)
- special_vocab._set_special_token("middle", 68)
- special_vocab._set_special_token("fsep", 70)
- special_vocab._set_special_token("eot", 107)
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_key_length(hparams["head_dim"])
- self.gguf_writer.add_value_length(hparams["head_dim"])
- self.gguf_writer.add_file_type(self.ftype)
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
- # To prevent errors, skip loading lm_head.weight.
- if name == "lm_head.weight":
- logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
- return []
-
- # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
- if name.endswith("norm.weight"):
- data_torch = data_torch + 1
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("Starcoder2ForCausalLM")
-class StarCoder2Model(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER2
-
-
-@Model.register("MambaForCausalLM", "MambaLMHeadModel")
-class MambaModel(Model):
- model_arch = gguf.MODEL_ARCH.MAMBA
-
- def set_vocab(self):
- vocab_size = self.hparams["vocab_size"]
- # Round vocab size to next multiple of 8
- pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
- # pad using ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
- self.hparams["vocab_size"] = vocab_size
-
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- elif (self.dir_model / "tokenizer.model").is_file():
- self._set_vocab_sentencepiece()
- else:
- # Use the GPT-NeoX tokenizer when no tokenizer files are present
- tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
- logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
- neox_reader = gguf.GGUFReader(tokenizer_path, "r")
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
- self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
- self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
- assert field
- self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
- assert field
- self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
- assert field
- self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
- self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
- self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
- self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
-
- field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
- self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
-
- def set_gguf_parameters(self):
- d_model = self.find_hparam(["hidden_size", "d_model"])
- d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
- d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
- d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
- # ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
- dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
- rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
-
- # Fail early for models which don't have a block expansion factor of 2
- assert d_inner == 2 * d_model
-
- self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
- self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
- self.gguf_writer.add_embedding_length(d_model)
- self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
- self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_ssm_conv_kernel(d_conv)
- self.gguf_writer.add_ssm_inner_size(d_inner)
- self.gguf_writer.add_ssm_state_size(d_state)
- self.gguf_writer.add_ssm_time_step_rank(dt_rank)
- self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
- self.gguf_writer.add_file_type(self.ftype)
-
- _tok_embd = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
- tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
-
- new_name = self.map_tensor_name(name)
-
- if name.endswith(".A_log"):
- logger.debug("A_log --> A ==> " + new_name)
- data_torch = -torch.exp(data_torch)
-
- # assuming token_embd.weight is seen before output.weight
- if self._tok_embd is not None and new_name == output_name:
- if torch.equal(self._tok_embd, data_torch):
- logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
- return []
- elif new_name == tok_embd_name:
- self._tok_embd = data_torch
-
- return [(new_name, data_torch)]
-
- def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
- del n_dims # unused
-
- return bid is not None and new_name in (
- self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
- gguf.MODEL_TENSOR.SSM_CONV1D,
- gguf.MODEL_TENSOR.SSM_X,
- gguf.MODEL_TENSOR.SSM_DT,
- gguf.MODEL_TENSOR.SSM_A,
- gguf.MODEL_TENSOR.SSM_D,
- ]
- )
-
-
-@Model.register("CohereForCausalLM")
-class CommandR2Model(Model):
- model_arch = gguf.MODEL_ARCH.COMMAND_R
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
-
- # max_position_embeddings = 8192 in config.json but model was actually
- # trained on 128k context length
- # aya-23 models don't have model_max_length specified
- self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
-
-
-@Model.register("OlmoForCausalLM")
-@Model.register("OLMoForCausalLM")
-class OlmoModel(Model):
- model_arch = gguf.MODEL_ARCH.OLMO
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_layer_norm_eps(1e-5)
- clip_qkv = self.hparams.get("clip_qkv")
- if clip_qkv is not None:
- self.gguf_writer.add_clamp_kqv(clip_qkv)
-
- # Same as super class, but permuting q_proj, k_proj
- # Copied from: LlamaModel
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- del bid # unused
-
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
-
- if name.endswith("q_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
-
- return [(self.map_tensor_name(name), data_torch)]
-
-
-@Model.register("JinaBertModel", "JinaBertForMaskedLM")
-class JinaBertV2Model(BertModel):
- model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.intermediate_size = self.hparams["intermediate_size"]
-
- def get_tensors(self):
- for name, data in super().get_tensors():
- if 'gated_layer' in name:
- d1 = data[:self.intermediate_size, :]
- name1 = name.replace('gated_layers', 'gated_layers_w')
- name1 = name1.replace('up_gated_layer', 'gated_layers_v')
- d2 = data[self.intermediate_size:, :]
- name2 = name.replace('gated_layers', 'gated_layers_v')
- name2 = name2.replace('up_gated_layer', 'gated_layers_w')
- yield name1, d1
- yield name2, d2
- continue
-
- yield name, data
-
- def set_vocab(self, *args, **kwargs):
- tokenizer_class = 'BertTokenizer'
- with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_class = json.load(f)['tokenizer_class']
-
- if tokenizer_class == 'BertTokenizer':
- super().set_vocab()
- elif tokenizer_class == 'RobertaTokenizer':
- self._set_vocab_gpt2()
- self.gguf_writer.add_token_type_count(2)
- else:
- raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
- self.gguf_writer.add_add_bos_token(True)
- self.gguf_writer.add_add_eos_token(True)
-
-
-@Model.register("ArcticForCausalLM")
-class ArcticModel(Model):
- model_arch = gguf.MODEL_ARCH.ARCTIC
-
- def set_vocab(self):
- # The reason for using a custom implementation here is that the
- # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
- # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
- from sentencepiece import SentencePieceProcessor
-
- tokenizer_path = self.dir_model / 'tokenizer.model'
-
- if not tokenizer_path.is_file():
- logger.error(f'Error: Missing {tokenizer_path}')
- sys.exit(1)
-
- # Read the whole vocabulary from the tokenizer.model file
- tokenizer = SentencePieceProcessor()
- tokenizer.LoadFromFile(str(tokenizer_path))
-
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
-
- tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
- scores: list[float] = [-10000.0] * vocab_size
- toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
-
- for token_id in range(tokenizer.vocab_size()):
-
- piece = tokenizer.IdToPiece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.GetScore(token_id)
-
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.IsUnknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.IsControl(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.IsUnused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.IsByte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
-
- tokens[token_id] = text
- scores[token_id] = score
- toktypes[token_id] = toktype
-
- # Use the added_tokens_decoder field from tokeniser_config.json as the source
- # of information about added/redefined tokens and modify them accordingly.
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
-
- if "added_tokens_decoder" in tokenizer_config_json:
- added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
- for token_id, token_json in added_tokens_decoder.items():
- token_id = int(token_id)
- if (token_id >= vocab_size):
- logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
- continue
-
- token_content = token_json["content"]
- token_type = SentencePieceTokenTypes.USER_DEFINED
- token_score = -10000.0
-
- # Map unk_token to UNKNOWN, other special tokens to CONTROL
- # Set the score to 0.0 as in the original tokenizer.model
- if ("special" in token_json) and token_json["special"]:
- if token_content == tokenizer_config_json["unk_token"]:
- token_type = SentencePieceTokenTypes.UNKNOWN
- else:
- token_type = SentencePieceTokenTypes.CONTROL
- token_score = 0.0
-
- logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
- tokens[token_id] = token_content.encode("utf-8")
- toktypes[token_id] = token_type
- scores[token_id] = token_score
-
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_tokenizer_pre("default")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
-
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
-
- _experts: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- n_head = self.hparams["num_attention_heads"]
- n_kv_head = self.hparams.get("num_key_value_heads")
-
- if name.endswith("q_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
-
- # process the experts separately
- if name.find("block_sparse_moe.experts") != -1:
- n_experts = self.hparams["num_local_experts"]
-
- assert bid is not None
-
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
-
- self._experts[bid][name] = data_torch
-
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
-
- # merge the experts into a single 3d tensor
- for wid in ["w1", "w2", "w3"]:
- datas: list[Tensor] = []
-
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
-
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
-
- new_name = self.map_tensor_name(merged_name)
-
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def write_tensors(self):
- super().write_tensors()
-
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
-
-
-@Model.register("DeepseekV2ForCausalLM")
-class DeepseekV2Model(Model):
- model_arch = gguf.MODEL_ARCH.DEEPSEEK2
-
- def set_vocab(self):
- self._set_vocab_gpt2()
-
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
-
- self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
- self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
- self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
- self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
- self.gguf_writer.add_value_length(hparams["v_head_dim"])
- self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
- self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
- self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
- self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
- self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
-
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "yarn":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
- self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
-
- _experts: list[dict[str, Tensor]] | None = None
-
- def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
- # process the experts separately
- if name.find("mlp.experts") != -1:
- n_experts = self.hparams["n_routed_experts"]
- assert bid is not None
-
- if self._experts is None:
- self._experts = [{} for _ in range(self.block_count)]
-
- self._experts[bid][name] = data_torch
-
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
-
- # merge the experts into a single 3d tensor
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- datas: list[Tensor] = []
-
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
-
- data_torch = torch.stack(datas, dim=0)
-
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
-
- new_name = self.map_tensor_name(merged_name)
-
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
-
- return [(self.map_tensor_name(name), data_torch)]
-
- def write_tensors(self):
- super().write_tensors()
-
- if self._experts is not None:
- # flatten `list[dict[str, Tensor]]` into `list[str]`
- experts = [k for d in self._experts for k in d.keys()]
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts}")
-
-
-###### CONVERSION LOGIC ######
-
-
-# tree of lazy tensors
-class LazyTorchTensor(gguf.LazyBase):
- _tensor_type = torch.Tensor
- # to keep the type-checker happy
- dtype: torch.dtype
- shape: torch.Size
-
- # only used when converting a torch.Tensor to a np.ndarray
- _dtype_map: dict[torch.dtype, type] = {
- torch.float16: np.float16,
- torch.float32: np.float32,
- }
-
- def numpy(self) -> gguf.LazyNumpyTensor:
- dtype = self._dtype_map[self.dtype]
- return gguf.LazyNumpyTensor(
- meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
- lazy=self._lazy,
- args=(self,),
- func=(lambda s: s[0].numpy())
- )
-
- @classmethod
- def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
- return torch.empty(size=shape, dtype=dtype, device="meta")
-
- @classmethod
- def __torch_function__(cls, func, types, args=(), kwargs=None):
- del types # unused
-
- if kwargs is None:
- kwargs = {}
-
- if func is torch.Tensor.numpy:
- return args[0].numpy()
-
- return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a huggingface model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--awq-path", type=Path, default=None,
- help="Path to scale awq cache file",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
- )
- parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
- help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
- )
- parser.add_argument(
- "--bigendian", action="store_true",
- help="model is executed on big endian machine",
- )
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file",
- )
- parser.add_argument(
- "--use-temp-file", action="store_true",
- help="use the tempfile library while processing (helpful when running out of memory, process killed)",
- )
- parser.add_argument(
- "--no-lazy", action="store_true",
- help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
- )
- parser.add_argument(
- "--model-name", type=str, default=None,
- help="name of the model",
- )
- parser.add_argument(
- "--verbose", action="store_true",
- help="increase output verbosity",
- )
-
- return parser.parse_args()
-
-
-def main() -> None:
- args = parse_args()
-
- logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
-
- dir_model = args.model
-
- if args.awq_path:
- sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
- from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
- tmp_model_path = args.model / "weighted_model"
- dir_model = tmp_model_path
- if tmp_model_path.is_dir():
- logger.info(f"{tmp_model_path} exists as a weighted model.")
- else:
- tmp_model_path.mkdir(parents=True, exist_ok=True)
- logger.info("Saving new weighted model ...")
- add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
- logger.info(f"Saved weighted model at {tmp_model_path}.")
-
- if not dir_model.is_dir():
- logger.error(f'Error: {args.model} is not a directory')
- sys.exit(1)
-
- ftype_map: dict[str, gguf.LlamaFileType] = {
- "f32": gguf.LlamaFileType.ALL_F32,
- "f16": gguf.LlamaFileType.MOSTLY_F16,
- "bf16": gguf.LlamaFileType.MOSTLY_BF16,
- "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
- "auto": gguf.LlamaFileType.GUESSED,
- }
-
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / 'ggml-model-{ftype}.gguf'
-
- logger.info(f"Loading model: {dir_model.name}")
-
- hparams = Model.load_hparams(dir_model)
-
- with torch.inference_mode():
- try:
- model_class = Model.from_model_architecture(hparams["architectures"][0])
- except NotImplementedError:
- logger.error(f"Model {hparams['architectures'][0]} is not supported")
- sys.exit(1)
-
- model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name)
-
- logger.info("Set model parameters")
- model_instance.set_gguf_parameters()
-
- logger.info("Set model tokenizer")
- model_instance.set_vocab()
-
- model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
-
- if args.vocab_only:
- logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
- model_instance.write_vocab()
- else:
- logger.info(f"Exporting model to '{model_instance.fname_out}'")
- model_instance.write()
-
- logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
-
-
-if __name__ == '__main__':
- main()