diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /convert-llama-ggml-to-gguf.py | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'convert-llama-ggml-to-gguf.py')
-rwxr-xr-x | convert-llama-ggml-to-gguf.py | 445 |
1 files changed, 0 insertions, 445 deletions
diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py deleted file mode 100755 index 9349de3b..00000000 --- a/convert-llama-ggml-to-gguf.py +++ /dev/null @@ -1,445 +0,0 @@ -#!/usr/bin/env python3 -from __future__ import annotations - -import logging -import argparse -import os -import struct -import sys -from enum import IntEnum -from pathlib import Path - -import numpy as np - -if 'NO_LOCAL_GGUF' not in os.environ: - sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) -import gguf - -logger = logging.getLogger("ggml-to-gguf") - - -class GGMLFormat(IntEnum): - GGML = 0 - GGMF = 1 - GGJT = 2 - - -class GGMLFType(IntEnum): - ALL_F32 = 0 - MOSTLY_F16 = 1 - MOSTLY_Q4_0 = 2 - MOSTLY_Q4_1 = 3 - MOSTLY_Q4_1_SOME_F16 = 4 - MOSTLY_Q8_0 = 7 - MOSTLY_Q5_0 = 8 - MOSTLY_Q5_1 = 9 - MOSTLY_Q2_K = 10 - MOSTLY_Q3_K_S = 11 - MOSTLY_Q3_K_M = 12 - MOSTLY_Q3_K_L = 13 - MOSTLY_Q4_K_S = 14 - MOSTLY_Q4_K_M = 15 - MOSTLY_Q5_K_S = 16 - MOSTLY_Q5_K_M = 17 - MOSTLY_Q6_K = 18 - - -class Hyperparameters: - def __init__(self): - self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0 - self.n_layer = self.n_rot = self.n_ff = 0 - self.ftype = GGMLFType.ALL_F32 - - def set_n_ff(self, model): - ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight') - assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor' - ff_tensor = model.tensors[ff_tensor_idx] - self.n_ff = ff_tensor.dims[1] - - def load(self, data, offset): - ( - self.n_vocab, - self.n_embd, - self.n_mult, - self.n_head, - self.n_layer, - self.n_rot, - ftype, - ) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) - try: - self.ftype = GGMLFType(ftype) - except ValueError: - raise ValueError(f'Invalid ftype {ftype}') - return 4 * 7 - - def __str__(self): - return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>' - - -class Vocab: - def __init__(self, load_scores = True): - self.items = [] - self.load_scores = load_scores - - def load(self, data, offset, n_vocab): - orig_offset = offset - for _ in range(n_vocab): - itemlen = struct.unpack('<I', data[offset:offset + 4])[0] - assert itemlen < 4096, 'Absurd vocab item length' - offset += 4 - item_text = bytes(data[offset:offset + itemlen]) - offset += itemlen - if self.load_scores: - item_score = struct.unpack('<f', data[offset:offset + 4])[0] - offset += 4 - else: - item_score = 0.0 - self.items.append((item_text, item_score)) - return offset - orig_offset - - -class Tensor: - def __init__(self, use_padding = True): - self.name = None - self.dims: tuple[int, ...] = () - self.dtype = None - self.start_offset = 0 - self.len_bytes = np.int64(0) - self.use_padding = use_padding - - def load(self, data, offset): - orig_offset = offset - (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12]) - assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}' - assert name_len < 4096, 'Absurd tensor name length' - quant = gguf.GGML_QUANT_SIZES.get(dtype) - assert quant is not None, 'Unknown tensor type' - (blksize, tysize) = quant - offset += 12 - self.dtype= dtype - self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) - offset += 4 * n_dims - self.name = bytes(data[offset:offset + name_len]) - offset += name_len - pad = ((offset + 31) & ~31) - offset if self.use_padding else 0 - offset += pad - n_elems = np.prod(self.dims) - n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize) - self.start_offset = offset - self.len_bytes = n_bytes - offset += n_bytes - return offset - orig_offset - - -class GGMLModel: - def __init__(self): - self.hyperparameters = None - self.vocab = None - self.tensor_map = {} - self.tensors = [] - - def validate_header(self, data, offset): - magic = bytes(data[offset:offset + 4]) - if magic == b'GGUF': - raise ValueError('File is already in GGUF format.') - if magic == b'lmgg': - self.file_format = GGMLFormat.GGML - self.format_version = 1 - return 4 - version = struct.unpack('<I', data[offset + 4:offset + 8])[0] - if magic == b'fmgg': - if version != 1: - raise ValueError(f'Cannot handle unexpected GGMF file version {version}') - self.file_format = GGMLFormat.GGMF - self.format_version = version - return 8 - if magic == b'tjgg': - if version < 1 or version > 3: - raise ValueError(f'Cannot handle unexpected GGJT file version {version}') - self.file_format = GGMLFormat.GGJT - self.format_version = version - return 8 - raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.") - - def validate_conversion(self, ftype): - err = '' - if (self.file_format < GGMLFormat.GGJT or self.format_version < 2): - if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16): - err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.' - elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2): - if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1, - GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0): - err = 'Q4 and Q8 quantizations changed in GGJTv3.' - if len(err) > 0: - raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.') - - def load(self, data, offset): - offset += self.validate_header(data, offset) - hp = Hyperparameters() - offset += hp.load(data, offset) - logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') - self.validate_conversion(hp.ftype) - vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML) - offset += vocab.load(data, offset, hp.n_vocab) - tensors: list[Tensor] = [] - tensor_map = {} - while offset < len(data): - tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF) - offset += tensor.load(data, offset) - tensor_map[tensor.name] = len(tensors) - tensors.append(tensor) - self.hyperparameters = hp - self.vocab = vocab - self.tensors = tensors - self.tensor_map = tensor_map - hp.set_n_ff(self) - return offset - - -class GGMLToGGUF: - def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None): - hp = ggml_model.hyperparameters - self.model = ggml_model - self.data = data - self.cfg = cfg - self.params_override = params_override - self.vocab_override = vocab_override - self.special_vocab = special_vocab - if params_override is not None: - n_kv_head = params_override.n_head_kv - else: - if cfg.gqa == 1: - n_kv_head = hp.n_head - else: - gqa = float(cfg.gqa) - n_kv_head = None - for x in range(1, 256): - if float(hp.n_head) / float(x) == gqa: - n_kv_head = x - assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param" - logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') - self.n_kv_head = n_kv_head - self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer) - - def save(self): - logger.info('* Preparing to save GGUF file') - gguf_writer = gguf.GGUFWriter( - self.cfg.output, - gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], - use_temp_file = False) - self.add_params(gguf_writer) - self.add_vocab(gguf_writer) - if self.special_vocab is not None: - self.special_vocab.add_to_gguf(gguf_writer) - self.add_tensors(gguf_writer) - logger.info(" gguf: write header") - gguf_writer.write_header_to_file() - logger.info(" gguf: write metadata") - gguf_writer.write_kv_data_to_file() - logger.info(" gguf: write tensors") - gguf_writer.write_tensors_to_file() - gguf_writer.close() - - def add_params(self, gguf_writer): - hp = self.model.hyperparameters - cfg = self.cfg - if cfg.desc is not None: - desc = cfg.desc - else: - desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format' - try: - # Filenames aren't necessarily valid UTF8. - name = cfg.name if cfg.name is not None else cfg.input.name - except UnicodeDecodeError: - name = None - logger.info('* Adding model parameters and KV items') - if name is not None: - gguf_writer.add_name(name) - gguf_writer.add_description(desc) - gguf_writer.add_file_type(int(hp.ftype)) - if self.params_override is not None: - po = self.params_override - assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch' - assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch' - assert po.n_head == hp.n_head, 'Model hyperparams mismatch' - gguf_writer.add_context_length (po.n_ctx) - gguf_writer.add_embedding_length (po.n_embd) - gguf_writer.add_block_count (po.n_layer) - gguf_writer.add_feed_forward_length (po.n_ff) - gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head) - gguf_writer.add_head_count (po.n_head) - gguf_writer.add_head_count_kv (po.n_head_kv) - gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps) - return - gguf_writer.add_context_length(cfg.context_length) - gguf_writer.add_embedding_length(hp.n_embd) - gguf_writer.add_block_count(hp.n_layer) - gguf_writer.add_feed_forward_length(hp.n_ff) - gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head) - gguf_writer.add_head_count(hp.n_head) - gguf_writer.add_head_count_kv(self.n_kv_head) - gguf_writer.add_layer_norm_rms_eps(float(cfg.eps)) - - def add_vocab(self, gguf_writer): - hp = self.model.hyperparameters - gguf_writer.add_tokenizer_model('llama') - gguf_writer.add_tokenizer_pre('default') - tokens = [] - scores = [] - toktypes = [] - if self.vocab_override is not None: - vo = self.vocab_override - logger.info('* Adding vocab item(s)') - for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()): - tokens.append(vbytes) - scores.append(score) - toktypes.append(ttype) - assert len(tokens) == hp.n_vocab, \ - f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - if len(toktypes) > 0: - gguf_writer.add_token_types(toktypes) - return - logger.info(f'* Adding {hp.n_vocab} vocab item(s)') - assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab' - for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items): - tt = 1 # Normal - # Special handling for UNK, BOS, EOS tokens. - if tokid <= 2: - if tokid == 0: - vbytes = b'<unk>' - tt = 2 - elif tokid == 1: - vbytes = b'<s>' - tt = 3 - else: - vbytes = b'</s>' - tt = 3 - elif len(vbytes) == 0: - tt = 3 # Control - elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1: - vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8') - tt = 6 # Byte - else: - vbytes = vbytes.replace(b' ', b'\xe2\x96\x81') - toktypes.append(tt) - tokens.append(vbytes) - scores.append(vscore) - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - gguf_writer.add_token_types(toktypes) - gguf_writer.add_unk_token_id(0) - gguf_writer.add_bos_token_id(1) - gguf_writer.add_eos_token_id(2) - - def add_tensors(self, gguf_writer): - tensor_map = self.name_map - data = self.data - logger.info(f'* Adding {len(self.model.tensors)} tensor(s)') - for tensor in self.model.tensors: - name = str(tensor.name, 'UTF-8') - mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) - assert mapped_name is not None, f'Bad name {name}' - tempdims = list(tensor.dims[:]) - if len(tempdims) > 1: - temp = tempdims[1] - tempdims[1] = tempdims[0] - tempdims[0] = temp - gguf_writer.add_tensor( - mapped_name, - data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], - raw_shape = tempdims, - raw_dtype = tensor.dtype) - - -def handle_metadata(cfg, hp): - import convert - assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory' - hf_config_path = cfg.model_metadata_dir / "config.json" - orig_config_path = cfg.model_metadata_dir / "params.json" - # We pass a fake model here. "original" mode will check the shapes of some - # tensors if information is missing in the .json file: other than that, the - # model data isn't used so this should be safe (at least for now). - fakemodel = { - 'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor), - 'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor), - } - fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab] - fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff] - if hf_config_path.exists(): - params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path) - elif orig_config_path.exists(): - params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) - else: - raise ValueError('Unable to load metadata') - vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) - vocab_factory = convert.VocabFactory(vocab_path) - vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir) - convert.check_vocab_size(params, vocab) - return params, vocab, special_vocab - - -def handle_args(): - parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF') - parser.add_argument('--input', '-i', type = Path, required = True, - help = 'Input GGMLv3 filename') - parser.add_argument('--output', '-o', type = Path, required = True, - help ='Output GGUF filename') - parser.add_argument('--name', - help = 'Set model name') - parser.add_argument('--desc', - help = 'Set model description') - parser.add_argument('--gqa', type = int, default = 1, - help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') - parser.add_argument('--eps', default = '5.0e-06', - help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') - parser.add_argument('--context-length', '-c', type=int, default = 2048, - help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') - parser.add_argument('--model-metadata-dir', '-m', type = Path, - help ='Load HuggingFace/.pth vocab and metadata from the specified directory') - parser.add_argument("--vocab-dir", type=Path, - help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") - parser.add_argument("--vocabtype", default="spm,hfft", - help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") - parser.add_argument("--verbose", action="store_true", help="increase output verbosity") - return parser.parse_args() - - -def main(): - cfg = handle_args() - logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO) - logger.info(f'* Using config: {cfg}') - logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===') - if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'): - logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') - data = np.memmap(cfg.input, mode = 'r') - model = GGMLModel() - logger.info('* Scanning GGML input file') - offset = model.load(data, 0) # noqa - logger.info(f'* GGML model hyperparameters: {model.hyperparameters}') - vocab_override = None - params_override = None - special_vocab = None - if cfg.model_metadata_dir is not None: - (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters) - logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') - logger.info(f'* Overriding params: {params_override}') - logger.info(f'* Overriding vocab: {vocab_override}') - logger.info(f'* Special vocab: {special_vocab}') - else: - logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') - if model.file_format == GGMLFormat.GGML: - logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') - converter = GGMLToGGUF( - model, data, cfg, - params_override = params_override, - vocab_override = vocab_override, - special_vocab = special_vocab - ) - converter.save() - logger.info(f'* Successful completion. Output saved to: {cfg.output}') - - -if __name__ == '__main__': - main() |