diff options
author | Brian <mofosyne@gmail.com> | 2024-05-04 05:36:41 +1000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-05-03 22:36:41 +0300 |
commit | a2ac89d6efb41b535778bfeaecaae8fe295b6ed3 (patch) | |
tree | 584a6f5316a627e64bfbc3aa5e098b911aef285a /convert-lora-to-ggml.py | |
parent | 433def286e98751bf17db75dce53847d075c0be5 (diff) |
convert.py : add python logging instead of print() (#6511)
* convert.py: add python logging instead of print()
* convert.py: verbose flag takes priority over dump flag log suppression
* convert.py: named instance logging
* convert.py: use explicit logger id string
* convert.py: convert extra print() to named logger
* convert.py: sys.stderr.write --> logger.error
* *.py: Convert all python scripts to use logging module
* requirements.txt: remove extra line
* flake8: update flake8 ignore and exclude to match ci settings
* gh-actions: add flake8-no-print to flake8 lint step
* pre-commit: add flake8-no-print to flake8 and also update pre-commit version
* convert-hf-to-gguf.py: print() to logger conversion
* *.py: logging basiconfig refactor to use conditional expression
* *.py: removed commented out logging
* fixup! *.py: logging basiconfig refactor to use conditional expression
* constant.py: logger.error then exit should be a raise exception instead
* *.py: Convert logger error and sys.exit() into a raise exception (for atypical error)
* gguf-convert-endian.py: refactor convert_byteorder() to use tqdm progressbar
* verify-checksum-model.py: This is the result of the program, it should be printed to stdout.
* compare-llama-bench.py: add blank line for readability during missing repo response
* reader.py: read_gguf_file() use print() over logging
* convert.py: warning goes to stderr and won't hurt the dump output
* gguf-dump.py: dump_metadata() should print to stdout
* convert-hf-to-gguf.py: print --> logger.debug or ValueError()
* verify-checksum-models.py: use print() for printing table
* *.py: refactor logging.basicConfig()
* gguf-py/gguf/*.py: use __name__ as logger name
Since they will be imported and not run directly.
* python-lint.yml: use .flake8 file instead
* constants.py: logger no longer required
* convert-hf-to-gguf.py: add additional logging
* convert-hf-to-gguf.py: print() --> logger
* *.py: fix flake8 warnings
* revert changes to convert-hf-to-gguf.py for get_name()
* convert-hf-to-gguf-update.py: use triple quoted f-string instead
* *.py: accidentally corrected the wrong line
* *.py: add compilade warning suggestions and style fixes
Diffstat (limited to 'convert-lora-to-ggml.py')
-rwxr-xr-x | convert-lora-to-ggml.py | 31 |
1 files changed, 16 insertions, 15 deletions
diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index 9a9936de..39536feb 100755 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import json import os import struct @@ -15,6 +16,8 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) import gguf +logger = logging.getLogger("lora-to-gguf") + NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} @@ -48,11 +51,9 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty if __name__ == '__main__': if len(sys.argv) < 2: - print(f"Usage: python {sys.argv[0]} <path> [arch]") - print( - "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" - ) - print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") + logger.info(f"Usage: python {sys.argv[0]} <path> [arch]") + logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'") + logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") @@ -70,7 +71,7 @@ if __name__ == '__main__': arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" if arch_name not in gguf.MODEL_ARCH_NAMES.values(): - print(f"Error: unsupported architecture {arch_name}") + logger.error(f"Error: unsupported architecture {arch_name}") sys.exit(1) arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] @@ -80,21 +81,21 @@ if __name__ == '__main__': params = json.load(f) if params["peft_type"] != "LORA": - print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") + logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) if params["fan_in_fan_out"] is True: - print("Error: param fan_in_fan_out is not supported") + logger.error("Error: param fan_in_fan_out is not supported") sys.exit(1) if params["bias"] is not None and params["bias"] != "none": - print("Error: param bias is not supported") + logger.error("Error: param bias is not supported") sys.exit(1) # TODO: these seem to be layers that have been trained but without lora. # doesn't seem widely used but eventually should be supported if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: - print("Error: param modules_to_save is not supported") + logger.error("Error: param modules_to_save is not supported") sys.exit(1) with open(output_path, "wb") as fout: @@ -125,13 +126,13 @@ if __name__ == '__main__': suffix = k[-len(lora_suffixes[0]):] k = k[: -len(lora_suffixes[0])] else: - print(f"Error: unrecognized tensor name {orig_k}") + logger.error(f"Error: unrecognized tensor name {orig_k}") sys.exit(1) tname = name_map.get_name(k) if tname is None: - print(f"Error: could not map tensor name {orig_k}") - print(" Note: the arch parameter must be specified if the model is not llama") + logger.error(f"Error: could not map tensor name {orig_k}") + logger.error(" Note: the arch parameter must be specified if the model is not llama") sys.exit(1) if suffix == ".lora_A.weight": @@ -141,8 +142,8 @@ if __name__ == '__main__': else: assert False - print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") + logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) - print(f"Converted {input_json} and {input_model} to {output_path}") + logger.info(f"Converted {input_json} and {input_model} to {output_path}") |