summaryrefslogtreecommitdiff
path: root/convert-persimmon-to-gguf.py
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2024-05-20 19:35:28 +0300
committerGitHub <noreply@github.com>2024-05-21 02:35:28 +1000
commitfabf30b4c4fca32e116009527180c252919ca922 (patch)
tree50b57bc259b9efa9d6a354ac420b70c608bca4ab /convert-persimmon-to-gguf.py
parent20385cebcc4bb3f6dd10f989573c11864d70d53d (diff)
llama : remove Persimmon (#7408)
* llama : remove Persimmon * requirements : remove
Diffstat (limited to 'convert-persimmon-to-gguf.py')
-rwxr-xr-xconvert-persimmon-to-gguf.py143
1 files changed, 0 insertions, 143 deletions
diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py
deleted file mode 100755
index 07dcade7..00000000
--- a/convert-persimmon-to-gguf.py
+++ /dev/null
@@ -1,143 +0,0 @@
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import logging
-import argparse
-import os
-import sys
-from pathlib import Path
-from pprint import pprint
-
-import torch
-from sentencepiece import SentencePieceProcessor
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-logger = logging.getLogger("persimmon-to-gguf")
-
-
-def _flatten_dict(dct, tensors, prefix=None):
- assert isinstance(dct, dict)
- for key in dct.keys():
- new_prefix = prefix + '.' + key if prefix is not None else key
- if isinstance(dct[key], torch.Tensor):
- tensors[new_prefix] = dct[key]
- elif isinstance(dct[key], dict):
- _flatten_dict(dct[key], tensors, new_prefix)
- else:
- raise ValueError(type(dct[key]))
- return None
-
-
-def _get_sentencepiece_tokenizer_info(dir_model: Path):
- tokenizer_path = dir_model / 'adept_vocab.model'
- logger.info('getting sentencepiece tokenizer from', tokenizer_path)
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- logger.info('adding tokens')
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
-
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
-
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
-
- toktype = 1
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- pass
- return tokens, scores, toktypes
-
-
-def main():
- parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
- parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
- parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- args = parser.parse_args()
- logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
- sys.path.append(str(args.adept_inference_dir))
- persimmon_model = torch.load(args.ckpt_path)
- hparams = persimmon_model['args']
- pprint(hparams)
- tensors: dict[str, torch.Tensor] = {}
- _flatten_dict(persimmon_model['model'], tensors, None)
-
- arch = gguf.MODEL_ARCH.PERSIMMON
- gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
-
- block_count = hparams.num_layers
- head_count = hparams.num_attention_heads
- head_count_kv = head_count
- ctx_length = hparams.seq_length
- hidden_size = hparams.hidden_size
-
- gguf_writer.add_name('persimmon-8b-chat')
- gguf_writer.add_context_length(ctx_length)
- gguf_writer.add_embedding_length(hidden_size)
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
- gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
- gguf_writer.add_head_count(head_count)
- gguf_writer.add_head_count_kv(head_count_kv)
- gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
- gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
-
- tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
- gguf_writer.add_tokenizer_model('llama')
- gguf_writer.add_tokenizer_pre('default')
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- gguf_writer.add_bos_token_id(71013)
- gguf_writer.add_eos_token_id(71013)
-
- tensor_map = gguf.get_tensor_name_map(arch, block_count)
- logger.info(tensor_map)
- for name in tensors.keys():
- data_torch = tensors[name]
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data_torch.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- raise ValueError(f"Can not map tensor '{name}'")
-
- n_dims = len(data.shape)
- logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}")
- gguf_writer.add_tensor(new_name, data)
- logger.info("gguf: write header")
- gguf_writer.write_header_to_file()
- logger.info("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- logger.info("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
- gguf_writer.close()
-
- logger.info(f"gguf: model successfully exported to '{args.outfile}'")
-
-
-if __name__ == '__main__':
- main()