summaryrefslogtreecommitdiff
path: root/convert.py
diff options
context:
space:
mode:
authorcompilade <git@compilade.net>2024-05-08 18:16:38 -0400
committerGitHub <noreply@github.com>2024-05-08 18:16:38 -0400
commitf98eb31c517c95960df1d0abc48002787f145f3b (patch)
treede51a7b79fa5e6488ed4f76b5d0867d6c23d3c51 /convert.py
parentbc4bba364fb96d908f2698e908648df5e6f55e02 (diff)
convert-hf : save memory with lazy evaluation (#7075)
* convert-hf : begin refactoring write_tensor * convert : upgrade to sentencepiece v0.2.0 * convert-hf : remove unused n_dims in extra_*_tensors * convert-hf : simplify MoE weights stacking * convert-hf : flake8 linter doesn't like semicolons * convert-hf : allow unusual model part names For example, loading `model-00001-of-00001.safetensors` now works. * convert-hf : fix stacking MoE expert tensors `torch.stack` and `torch.cat` don't do the same thing. * convert-hf : fix Mamba conversion Tested to work even with a SentencePiece-based tokenizer. * convert : use a string for the SentencePiece tokenizer path * convert-hf : display tensor shape * convert-hf : convert norms to f32 by default * convert-hf : sort model part names `os.listdir` is said to list files in arbitrary order. Sorting the file names should let "model-00009-of-00042.safetensors" be loaded before "model-00010-of-00042.safetensors". * convert-hf : use an ABC for Model again It seems Protocol can't be used as a statically type-checked ABC, because its subclasses also can't be instantiated. (why did it seem to work?) At least there's still a way to throw an error when forgetting to define the `model_arch` property of any registered Model subclasses. * convert-hf : use a plain class for Model, and forbid direct instantiation There are no abstract methods used anyway, so using ABC isn't really necessary. * convert-hf : more consistent formatting of cmdline args * convert-hf : align the message logged for converted tensors * convert-hf : fix Refact conversion * convert-hf : save memory with lazy evaluation * convert-hf : flake8 doesn't like lowercase L as a variable name * convert-hf : remove einops requirement for InternLM2 * convert-hf : faster model parts loading Instead of pre-loading them all into a dict, iterate on the tensors in the model parts progressively as needed in Model.write_tensors Conversion for some architectures relies on checking for the presence of specific tensor names, so for multi-part models, the weight map is read from the relevant json file to quickly get these names up-front. * convert-hf : minor changes for consistency * gguf-py : add tqdm as a dependency It's small, and used for a progress bar in GGUFWriter.write_tensors_to_file
Diffstat (limited to 'convert.py')
-rwxr-xr-xconvert.py20
1 files changed, 12 insertions, 8 deletions
diff --git a/convert.py b/convert.py
index aebfc50f..148bfd66 100755
--- a/convert.py
+++ b/convert.py
@@ -284,6 +284,7 @@ class Params:
n_experts = None
n_experts_used = None
f_rope_freq_base = None
+ n_ff = None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if config.get("moe"):
@@ -308,6 +309,8 @@ class Params:
n_experts_used = config["moe"]["num_experts_per_tok"]
f_rope_freq_base = 1e6
+ assert n_ff is not None
+
return Params(
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
@@ -462,7 +465,8 @@ class SentencePieceVocab(Vocab):
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
+ self.sentencepiece_tokenizer = SentencePieceProcessor()
+ self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
@@ -482,23 +486,23 @@ class SentencePieceVocab(Vocab):
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
- piece = tokenizer.id_to_piece(i)
+ piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
- score: float = tokenizer.get_score(i)
+ score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
- if tokenizer.is_unknown(i):
+ if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
- if tokenizer.is_control(i):
+ if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
- if tokenizer.is_unused(i):
+ if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
- if tokenizer.is_byte(i):
+ if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
@@ -906,7 +910,7 @@ class LazyUnpickler(pickle.Unpickler):
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
- CLASSES = {
+ CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
# getattr used here as a workaround for mypy not being smart enough to determine
# the staticmethods have a __func__ attribute.
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),