diff options
author | Cebtenzzre <cebtenzzre@gmail.com> | 2023-09-15 15:38:27 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-15 15:38:27 -0400 |
commit | 3aefaab9e59335ebb07d5205dbc8633efd680e58 (patch) | |
tree | 1249b50bd748a1bdcc85d010f44feda0d884fef7 /examples/baby-llama/baby-llama.cpp | |
parent | 69eb67e28275cd2d57693405f768754a7b2245ad (diff) |
check C++ code with -Wmissing-declarations (#3184)
Diffstat (limited to 'examples/baby-llama/baby-llama.cpp')
-rw-r--r-- | examples/baby-llama/baby-llama.cpp | 148 |
1 files changed, 77 insertions, 71 deletions
diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index a99ece9a..ed61125e 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -9,12 +9,12 @@ #endif #ifdef LLAMA_DEFAULT_RMS_EPS -static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; +constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; #else -static const float rms_norm_eps = 5e-6f; +constexpr float rms_norm_eps = 5e-6f; #endif -float frand() { +static float frand() { return (float)rand()/(float)RAND_MAX; } @@ -25,19 +25,21 @@ struct random_normal_distribution { float max; }; -void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { +static void init_random_normal_distribution( + struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max +) { rnd->gen = std::mt19937(seed); rnd->nd = std::normal_distribution<float>{mean, std}; rnd->min = min; rnd->max = max; } -float frand_normal(struct random_normal_distribution * rnd) { +static float frand_normal(struct random_normal_distribution * rnd) { const float r = rnd->nd(rnd->gen); return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r); } -void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { +static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { @@ -48,13 +50,9 @@ void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, ggml_graph_compute(graph, &plan); } -struct ggml_tensor * randomize_tensor( - struct ggml_tensor * tensor, - int ndims, - const int64_t ne[], - float fmin, - float fmax) { - +static struct ggml_tensor * randomize_tensor( + struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax +) { switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { @@ -95,11 +93,9 @@ struct ggml_tensor * randomize_tensor( return tensor; } -struct ggml_tensor * randomize_tensor_normal( - struct ggml_tensor * tensor, - int ndims, - const int64_t ne[], - struct random_normal_distribution * rnd) { +static struct ggml_tensor * randomize_tensor_normal( + struct ggml_tensor * tensor, int ndims, const int64_t ne[], struct random_normal_distribution * rnd +) { float scale = 1.0; // xavier switch (ndims) { case 1: @@ -159,7 +155,7 @@ struct llama_hparams { } }; -uint32_t get_n_ff(const struct llama_hparams* hparams) { +static uint32_t get_n_ff(const struct llama_hparams* hparams) { const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; return n_ff; } @@ -260,7 +256,7 @@ struct llama_model_lora { std::vector<llama_layer_lora> layers; }; -void init_model(struct llama_model * model) { +static void init_model(struct llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -297,7 +293,7 @@ void init_model(struct llama_model * model) { } -void init_model_lora(struct llama_model_lora * model) { +static void init_model_lora(struct llama_model_lora * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -340,7 +336,7 @@ void init_model_lora(struct llama_model_lora * model) { } } -void set_param_model(struct llama_model * model) { +static void set_param_model(struct llama_model * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -366,7 +362,7 @@ void set_param_model(struct llama_model * model) { } } -void set_param_model_lora(struct llama_model_lora * model) { +static void set_param_model_lora(struct llama_model_lora * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -397,7 +393,7 @@ void set_param_model_lora(struct llama_model_lora * model) { } } -void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { +static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -426,7 +422,9 @@ void randomize_model(struct llama_model * model, int seed, float mean, float std } -void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, float std, float min, float max) { +static void randomize_model_lora( + struct llama_model_lora * model, int seed, float mean, float std, float min, float max +) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -459,7 +457,7 @@ void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, } } -bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { +static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; @@ -495,7 +493,7 @@ bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int return true; } -bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { +static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; @@ -531,15 +529,15 @@ bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * return true; } -struct ggml_tensor * forward( - struct llama_model * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past) { - +static struct ggml_tensor * forward( + struct llama_model * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -756,25 +754,25 @@ struct ggml_tensor * forward( return inpL; } -void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { +static void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { GGML_ASSERT(tensor->n_dims == 1); GGML_ASSERT(tensor->ne[0] == ne0); } -void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { +static void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { GGML_ASSERT(tensor->n_dims == 2); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); } -void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { +static void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { GGML_ASSERT(tensor->n_dims == 3); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); } -void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { +static void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { GGML_ASSERT(tensor->n_dims == 4); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); @@ -782,16 +780,16 @@ void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int6 GGML_ASSERT(tensor->ne[3] == ne3); } -struct ggml_tensor * forward_batch( - struct llama_model * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past, - const int n_batch) { - +static struct ggml_tensor * forward_batch( + struct llama_model * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past, + const int n_batch +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -1073,16 +1071,15 @@ struct ggml_tensor * forward_batch( return inpL; } - -struct ggml_tensor * forward_lora( - struct llama_model_lora * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past) { - +static struct ggml_tensor * forward_lora( + struct llama_model_lora * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -1328,7 +1325,7 @@ struct ggml_tensor * forward_lora( return inpL; } -void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { +static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { assert(logits->n_dims == 2); assert(probs->n_dims == 2); assert(best_samples->n_dims == 1); @@ -1359,7 +1356,10 @@ void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, str } } -void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { +static void sample_softmax_batch( + struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, + struct ggml_tensor * best_samples +) { GGML_ASSERT(best_samples->n_dims == 2); GGML_ASSERT(logits->n_dims == 3); GGML_ASSERT(probs->n_dims == 3); @@ -1393,7 +1393,7 @@ void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits } } -void print_row(struct ggml_tensor * probs, int i) { +static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); printf(" %.2f", p); @@ -1401,7 +1401,7 @@ void print_row(struct ggml_tensor * probs, int i) { printf("\n"); } -void print_matrix(struct ggml_tensor * probs) { +static void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { @@ -1412,7 +1412,7 @@ void print_matrix(struct ggml_tensor * probs) { } } -void print_token(int token, int n_vocab) { +static void print_token(int token, int n_vocab) { for (int k = 0; k < token; ++k) { printf(" "); } @@ -1423,14 +1423,14 @@ void print_token(int token, int n_vocab) { printf("\n"); } -void print_tokens(struct ggml_tensor * tokens, int n_vocab) { +static void print_tokens(struct ggml_tensor * tokens, int n_vocab) { for (int i=0; i<tokens->ne[0]; ++i) { int token = ggml_get_i32_1d(tokens, i); print_token(token, n_vocab); } } -void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { +static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; float randomness = 0.0f; @@ -1451,7 +1451,9 @@ void get_example_targets(int example_id, struct ggml_tensor * tokens_input, stru } } -void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { +static void get_example_targets_batch( + struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets +) { GGML_ASSERT(tokens_input->n_dims == 2); GGML_ASSERT( targets->n_dims == 3); int n_tokens = tokens_input->ne[0]; @@ -1474,7 +1476,7 @@ void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct } } -void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { +static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; for (int i=0; i<n_tokens-n_shift; ++i) { @@ -1485,12 +1487,16 @@ void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * tar } } -struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { +static struct ggml_tensor * square_error_loss( + struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b +) { // todo: instead of a-b: a[1:]-b[:-1] return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b))); } -struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { +static struct ggml_tensor * cross_entropy_loss( + struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b +) { const float eps = 1e-3f; return ggml_sum(ctx, |