summaryrefslogtreecommitdiff
path: root/examples/embd-input/embd-input-lib.cpp
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-10-20 21:07:23 +0300
committerGitHub <noreply@github.com>2023-10-20 21:07:23 +0300
commitd1031cf49c3b958b915fd558e23453471c29ac33 (patch)
tree14fa2bc6d54d5e27bd1e8bfd6fa4dbf894dbe6b9 /examples/embd-input/embd-input-lib.cpp
parent8cf19d60dc93809db8e51fedc811595eed9134c5 (diff)
sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
Diffstat (limited to 'examples/embd-input/embd-input-lib.cpp')
-rw-r--r--examples/embd-input/embd-input-lib.cpp221
1 files changed, 0 insertions, 221 deletions
diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp
deleted file mode 100644
index 3ce33842..00000000
--- a/examples/embd-input/embd-input-lib.cpp
+++ /dev/null
@@ -1,221 +0,0 @@
-#include "build-info.h"
-#include "common.h"
-#include "embd-input.h"
-
-#include <cassert>
-#include <cinttypes>
-#include <cmath>
-#include <cstdio>
-#include <cstring>
-#include <ctime>
-#include <fstream>
-#include <iostream>
-#include <string>
-#include <vector>
-
-static llama_context ** g_ctx;
-
-extern "C" {
-
-struct MyModel* create_mymodel(int argc, char ** argv) {
- gpt_params params;
-
- if (!gpt_params_parse(argc, argv, params)) {
- return nullptr;
- }
-
- print_build_info();
-
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = uint32_t(time(NULL));
- }
- fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
-
- llama_backend_init(params.numa);
-
- llama_model * model;
- llama_context * ctx;
-
- g_ctx = &ctx;
-
- // load the model and apply lora adapter, if any
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return nullptr;
- }
-
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s\n", get_system_info(params).c_str());
- }
- struct MyModel * ret = new MyModel();
- ret->ctx = ctx;
- ret->params = params;
- ret->n_past = 0;
- // printf("ctx: %d\n", ret->ctx);
- return ret;
-}
-
-void free_mymodel(struct MyModel * mymodel) {
- llama_context * ctx = mymodel->ctx;
- llama_print_timings(ctx);
- llama_free(ctx);
- delete mymodel;
-}
-
-
-bool eval_float(void * model, float * input, int N){
- MyModel * mymodel = (MyModel*)model;
- llama_context * ctx = mymodel->ctx;
- gpt_params params = mymodel->params;
- int n_emb = llama_n_embd(llama_get_model(ctx));
- int n_past = mymodel->n_past;
- int n_batch = N; // params.n_batch;
-
- for (int i = 0; i < (int) N; i += n_batch) {
- int n_eval = (int) N - i;
- if (n_eval > n_batch) {
- n_eval = n_batch;
- }
- llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- n_past += n_eval;
- }
- mymodel->n_past = n_past;
- return true;
-}
-
-bool eval_tokens(void * model, std::vector<llama_token> tokens) {
- MyModel * mymodel = (MyModel* )model;
- llama_context * ctx;
- ctx = mymodel->ctx;
- gpt_params params = mymodel->params;
- int n_past = mymodel->n_past;
- for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
- int n_eval = (int) tokens.size() - i;
- if (n_eval > params.n_batch) {
- n_eval = params.n_batch;
- }
- if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- n_past += n_eval;
- }
- mymodel->n_past = n_past;
- return true;
-}
-
-bool eval_id(struct MyModel* mymodel, int id) {
- std::vector<llama_token> tokens;
- tokens.push_back(id);
- return eval_tokens(mymodel, tokens);
-}
-
-bool eval_string(struct MyModel * mymodel,const char* str){
- llama_context * ctx = mymodel->ctx;
- std::string str2 = str;
- std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
- eval_tokens(mymodel, embd_inp);
- return true;
-}
-
-llama_token sampling_id(struct MyModel* mymodel) {
- llama_context* ctx = mymodel->ctx;
- gpt_params params = mymodel->params;
- llama_sampling_params & sparams = params.sampling_params;
- // int n_ctx = llama_n_ctx(ctx);
-
- // out of user input, sample next token
- const float temp = sparams.temp;
- const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
- const float top_p = sparams.top_p;
- const float tfs_z = sparams.tfs_z;
- const float typical_p = sparams.typical_p;
- // const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
- // const float repeat_penalty = params.repeat_penalty;
- // const float alpha_presence = params.presence_penalty;
- // const float alpha_frequency = params.frequency_penalty;
- const int mirostat = sparams.mirostat;
- const float mirostat_tau = sparams.mirostat_tau;
- const float mirostat_eta = sparams.mirostat_eta;
- // const bool penalize_nl = params.penalize_nl;
-
- llama_token id = 0;
- {
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(llama_get_model(ctx));
-
- // Apply params.logit_bias map
- for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
-
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
-
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
-
- // TODO: Apply penalties
- // float nl_logit = logits[llama_token_nl(ctx)];
- // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- // llama_sample_repetition_penalty(ctx, &candidates_p,
- // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- // last_n_repeat, repeat_penalty);
- // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- // last_n_repeat, alpha_frequency, alpha_presence);
- // if (!penalize_nl) {
- // logits[llama_token_nl(ctx)] = nl_logit;
- // }
-
- if (temp <= 0) {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx, &candidates_p);
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temp(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temp(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- llama_sample_top_k(ctx, &candidates_p, top_k, 1);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
- llama_sample_typical(ctx, &candidates_p, typical_p, 1);
- llama_sample_top_p(ctx, &candidates_p, top_p, 1);
- llama_sample_temp(ctx, &candidates_p, temp);
- id = llama_sample_token(ctx, &candidates_p);
- }
- }
- }
-
- return id;
-}
-
-const char * sampling(struct MyModel * mymodel) {
- llama_context * ctx = mymodel->ctx;
- int id = sampling_id(mymodel);
- static std::string ret;
- if (id == llama_token_eos(ctx)) {
- ret = "</s>";
- } else {
- ret = llama_token_to_piece(ctx, id);
- }
- eval_id(mymodel, id);
- return ret.c_str();
-}
-
-}