diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-10-20 21:07:23 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-10-20 21:07:23 +0300 |
commit | d1031cf49c3b958b915fd558e23453471c29ac33 (patch) | |
tree | 14fa2bc6d54d5e27bd1e8bfd6fa4dbf894dbe6b9 /examples/embd-input/embd-input-lib.cpp | |
parent | 8cf19d60dc93809db8e51fedc811595eed9134c5 (diff) |
sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params
* llama : combine repetition, frequency and presence penalties in 1 call
* examples : remove embd-input and gptneox-wip
* sampling : rename penalty params + reduce size of "prev" vector
* sampling : add llama_sampling_print helper
* sampling : hide prev behind API and apply #3661
ggml-ci
Diffstat (limited to 'examples/embd-input/embd-input-lib.cpp')
-rw-r--r-- | examples/embd-input/embd-input-lib.cpp | 221 |
1 files changed, 0 insertions, 221 deletions
diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp deleted file mode 100644 index 3ce33842..00000000 --- a/examples/embd-input/embd-input-lib.cpp +++ /dev/null @@ -1,221 +0,0 @@ -#include "build-info.h" -#include "common.h" -#include "embd-input.h" - -#include <cassert> -#include <cinttypes> -#include <cmath> -#include <cstdio> -#include <cstring> -#include <ctime> -#include <fstream> -#include <iostream> -#include <string> -#include <vector> - -static llama_context ** g_ctx; - -extern "C" { - -struct MyModel* create_mymodel(int argc, char ** argv) { - gpt_params params; - - if (!gpt_params_parse(argc, argv, params)) { - return nullptr; - } - - print_build_info(); - - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = uint32_t(time(NULL)); - } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); - - llama_backend_init(params.numa); - - llama_model * model; - llama_context * ctx; - - g_ctx = &ctx; - - // load the model and apply lora adapter, if any - std::tie(model, ctx) = llama_init_from_gpt_params(params); - if (model == NULL) { - fprintf(stderr, "%s: error: unable to load model\n", __func__); - return nullptr; - } - - // print system information - { - fprintf(stderr, "\n"); - fprintf(stderr, "%s\n", get_system_info(params).c_str()); - } - struct MyModel * ret = new MyModel(); - ret->ctx = ctx; - ret->params = params; - ret->n_past = 0; - // printf("ctx: %d\n", ret->ctx); - return ret; -} - -void free_mymodel(struct MyModel * mymodel) { - llama_context * ctx = mymodel->ctx; - llama_print_timings(ctx); - llama_free(ctx); - delete mymodel; -} - - -bool eval_float(void * model, float * input, int N){ - MyModel * mymodel = (MyModel*)model; - llama_context * ctx = mymodel->ctx; - gpt_params params = mymodel->params; - int n_emb = llama_n_embd(llama_get_model(ctx)); - int n_past = mymodel->n_past; - int n_batch = N; // params.n_batch; - - for (int i = 0; i < (int) N; i += n_batch) { - int n_eval = (int) N - i; - if (n_eval > n_batch) { - n_eval = n_batch; - } - llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, }; - if (llama_decode(ctx, batch)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return false; - } - n_past += n_eval; - } - mymodel->n_past = n_past; - return true; -} - -bool eval_tokens(void * model, std::vector<llama_token> tokens) { - MyModel * mymodel = (MyModel* )model; - llama_context * ctx; - ctx = mymodel->ctx; - gpt_params params = mymodel->params; - int n_past = mymodel->n_past; - for (int i = 0; i < (int) tokens.size(); i += params.n_batch) { - int n_eval = (int) tokens.size() - i; - if (n_eval > params.n_batch) { - n_eval = params.n_batch; - } - if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return false; - } - n_past += n_eval; - } - mymodel->n_past = n_past; - return true; -} - -bool eval_id(struct MyModel* mymodel, int id) { - std::vector<llama_token> tokens; - tokens.push_back(id); - return eval_tokens(mymodel, tokens); -} - -bool eval_string(struct MyModel * mymodel,const char* str){ - llama_context * ctx = mymodel->ctx; - std::string str2 = str; - std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true); - eval_tokens(mymodel, embd_inp); - return true; -} - -llama_token sampling_id(struct MyModel* mymodel) { - llama_context* ctx = mymodel->ctx; - gpt_params params = mymodel->params; - llama_sampling_params & sparams = params.sampling_params; - // int n_ctx = llama_n_ctx(ctx); - - // out of user input, sample next token - const float temp = sparams.temp; - const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k; - const float top_p = sparams.top_p; - const float tfs_z = sparams.tfs_z; - const float typical_p = sparams.typical_p; - // const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; - // const float repeat_penalty = params.repeat_penalty; - // const float alpha_presence = params.presence_penalty; - // const float alpha_frequency = params.frequency_penalty; - const int mirostat = sparams.mirostat; - const float mirostat_tau = sparams.mirostat_tau; - const float mirostat_eta = sparams.mirostat_eta; - // const bool penalize_nl = params.penalize_nl; - - llama_token id = 0; - { - auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(llama_get_model(ctx)); - - // Apply params.logit_bias map - for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) { - logits[it->first] += it->second; - } - - std::vector<llama_token_data> candidates; - candidates.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - - // TODO: Apply penalties - // float nl_logit = logits[llama_token_nl(ctx)]; - // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); - // llama_sample_repetition_penalty(ctx, &candidates_p, - // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - // last_n_repeat, repeat_penalty); - // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, - // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, - // last_n_repeat, alpha_frequency, alpha_presence); - // if (!penalize_nl) { - // logits[llama_token_nl(ctx)] = nl_logit; - // } - - if (temp <= 0) { - // Greedy sampling - id = llama_sample_token_greedy(ctx, &candidates_p); - } else { - if (mirostat == 1) { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temp(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } else if (mirostat == 2) { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temp(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } else { - // Temperature sampling - llama_sample_top_k(ctx, &candidates_p, top_k, 1); - llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); - llama_sample_typical(ctx, &candidates_p, typical_p, 1); - llama_sample_top_p(ctx, &candidates_p, top_p, 1); - llama_sample_temp(ctx, &candidates_p, temp); - id = llama_sample_token(ctx, &candidates_p); - } - } - } - - return id; -} - -const char * sampling(struct MyModel * mymodel) { - llama_context * ctx = mymodel->ctx; - int id = sampling_id(mymodel); - static std::string ret; - if (id == llama_token_eos(ctx)) { - ret = "</s>"; - } else { - ret = llama_token_to_piece(ctx, id); - } - eval_id(mymodel, id); - return ret.c_str(); -} - -} |