summaryrefslogtreecommitdiff
path: root/examples/embd-input/minigpt4.py
diff options
context:
space:
mode:
authorningshanwutuobang <ningshanwutuobang@gmail.com>2023-06-28 23:53:37 +0800
committerGitHub <noreply@github.com>2023-06-28 18:53:37 +0300
commitcfa0750bc9dbc2d957a91b8ed09ab0035d8f3d4e (patch)
treec8d6d6e6548d4f03899704f64bce6939e471e4e6 /examples/embd-input/minigpt4.py
parent9d23589d638dc74577d5ff880e6d4248b795f12e (diff)
llama : support input embeddings directly (#1910)
* add interface for float input * fixed inpL shape and type * add examples of input floats * add test example for embd input * fixed sampling * add free for context * fixed add end condition for generating * add examples for llava.py * add READMD for llava.py * add READMD for llava.py * add example of PandaGPT * refactor the interface and fixed the styles * add cmake build for embd-input * add cmake build for embd-input * Add MiniGPT-4 example * change the order of the args of llama_eval_internal * fix ci error
Diffstat (limited to 'examples/embd-input/minigpt4.py')
-rw-r--r--examples/embd-input/minigpt4.py128
1 files changed, 128 insertions, 0 deletions
diff --git a/examples/embd-input/minigpt4.py b/examples/embd-input/minigpt4.py
new file mode 100644
index 00000000..8e98f851
--- /dev/null
+++ b/examples/embd-input/minigpt4.py
@@ -0,0 +1,128 @@
+import sys
+import os
+sys.path.insert(0, os.path.dirname(__file__))
+from embd_input import MyModel
+import numpy as np
+from torch import nn
+import torch
+from PIL import Image
+
+minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
+sys.path.insert(0, minigpt4_path)
+from minigpt4.models.blip2 import Blip2Base
+from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
+
+
+class MiniGPT4(Blip2Base):
+ """
+ MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
+ """
+ def __init__(self,
+ args,
+ vit_model="eva_clip_g",
+ q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
+ img_size=224,
+ drop_path_rate=0,
+ use_grad_checkpoint=False,
+ vit_precision="fp32",
+ freeze_vit=True,
+ freeze_qformer=True,
+ num_query_token=32,
+ llama_model="",
+ prompt_path="",
+ prompt_template="",
+ max_txt_len=32,
+ end_sym='\n',
+ low_resource=False, # use 8 bit and put vit in cpu
+ device_8bit=0
+ ):
+ super().__init__()
+ self.img_size = img_size
+ self.low_resource = low_resource
+ self.preprocessor = Blip2ImageEvalProcessor(img_size)
+
+ print('Loading VIT')
+ self.visual_encoder, self.ln_vision = self.init_vision_encoder(
+ vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
+ )
+ print('Loading VIT Done')
+ print('Loading Q-Former')
+ self.Qformer, self.query_tokens = self.init_Qformer(
+ num_query_token, self.visual_encoder.num_features
+ )
+ self.Qformer.cls = None
+ self.Qformer.bert.embeddings.word_embeddings = None
+ self.Qformer.bert.embeddings.position_embeddings = None
+ for layer in self.Qformer.bert.encoder.layer:
+ layer.output = None
+ layer.intermediate = None
+ self.load_from_pretrained(url_or_filename=q_former_model)
+ print('Loading Q-Former Done')
+ self.llama_proj = nn.Linear(
+ self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
+ )
+ self.max_txt_len = max_txt_len
+ self.end_sym = end_sym
+ self.model = MyModel(["main", *args])
+ # system promt
+ self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
+ "You will be able to see the image once I provide it to you. Please answer my questions."
+ "###")
+
+ def encode_img(self, image):
+ image = self.preprocessor(image)
+ image = image.unsqueeze(0)
+ device = image.device
+ if self.low_resource:
+ self.vit_to_cpu()
+ image = image.to("cpu")
+
+ with self.maybe_autocast():
+ image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
+
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+ query_output = self.Qformer.bert(
+ query_embeds=query_tokens,
+ encoder_hidden_states=image_embeds,
+ encoder_attention_mask=image_atts,
+ return_dict=True,
+ )
+
+ inputs_llama = self.llama_proj(query_output.last_hidden_state)
+ # atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
+ return inputs_llama
+
+ def load_projection(self, path):
+ state = torch.load(path)["model"]
+ self.llama_proj.load_state_dict({
+ "weight": state["llama_proj.weight"],
+ "bias": state["llama_proj.bias"]})
+
+ def chat(self, question):
+ self.model.eval_string("Human: ")
+ self.model.eval_string(question)
+ self.model.eval_string("\n### Assistant:")
+ return self.model.generate_with_print(end="###")
+
+ def chat_with_image(self, image, question):
+ with torch.no_grad():
+ embd_image = self.encode_img(image)
+ embd_image = embd_image.cpu().numpy()[0]
+ self.model.eval_string("Human: <Img>")
+ self.model.eval_float(embd_image.T)
+ self.model.eval_string("</Img> ")
+ self.model.eval_string(question)
+ self.model.eval_string("\n### Assistant:")
+ return self.model.generate_with_print(end="###")
+
+
+if __name__=="__main__":
+ a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
+ a.load_projection(os.path.join(
+ os.path.dirname(__file__) ,
+ "pretrained_minigpt4.pth"))
+ respose = a.chat_with_image(
+ Image.open("./media/llama1-logo.png").convert('RGB'),
+ "what is the text in the picture?")
+ a.chat("what is the color of it?")