summaryrefslogtreecommitdiff
path: root/examples/eval-callback
diff options
context:
space:
mode:
authorPierrick Hymbert <pierrick.hymbert@gmail.com>2024-04-11 14:51:07 +0200
committerGitHub <noreply@github.com>2024-04-11 14:51:07 +0200
commitb804b1ef77351d2a11be945462c6c251710476cb (patch)
treef963c03b90a54083ee67c22c882d20e388820897 /examples/eval-callback
parent8228b66dbc16290c5cbd70e80ab47c068e2569d8 (diff)
eval-callback: Example how to use eval callback for debugging (#6576)
* gguf-debug: Example how to use ggml callback for debugging * gguf-debug: no mutex, verify type, fix stride. * llama: cv eval: move cb eval field in common gpt_params * ggml_debug: use common gpt_params to pass cb eval. Fix get tensor SIGV random. * ggml_debug: ci: add tests * ggml_debug: EOL in CMakeLists.txt * ggml_debug: Remove unused param n_batch, no batching here * ggml_debug: fix trailing spaces * ggml_debug: fix trailing spaces * common: fix cb_eval and user data not initialized * ci: build revert label * ggml_debug: add main test label * doc: add a model: add a link to ggml-debug * ggml-debug: add to make toolchain * ggml-debug: tests add the main label * ggml-debug: ci add test curl label * common: allow the warmup to be disabled in llama_init_from_gpt_params * ci: add curl test * ggml-debug: better tensor type support * gitignore : ggml-debug * ggml-debug: printing also the sum of each tensor * ggml-debug: remove block size * eval-callback: renamed from ggml-debug * eval-callback: fix make toolchain --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'examples/eval-callback')
-rw-r--r--examples/eval-callback/CMakeLists.txt9
-rw-r--r--examples/eval-callback/README.md95
-rw-r--r--examples/eval-callback/eval-callback.cpp185
3 files changed, 289 insertions, 0 deletions
diff --git a/examples/eval-callback/CMakeLists.txt b/examples/eval-callback/CMakeLists.txt
new file mode 100644
index 00000000..d53f3742
--- /dev/null
+++ b/examples/eval-callback/CMakeLists.txt
@@ -0,0 +1,9 @@
+set(TARGET eval-callback)
+add_executable(${TARGET} eval-callback.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
+
+set(TEST_TARGET test-eval-callback)
+add_test(NAME ${TEST_TARGET} COMMAND eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42)
+set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)
diff --git a/examples/eval-callback/README.md b/examples/eval-callback/README.md
new file mode 100644
index 00000000..66a37e87
--- /dev/null
+++ b/examples/eval-callback/README.md
@@ -0,0 +1,95 @@
+# llama.cpp/examples/eval-callback
+
+A simple example which demonstrates how to use callback during the inference.
+It simply prints to the console all operations and tensor data.
+
+Usage:
+
+```shell
+eval-callback \
+ --hf-repo ggml-org/models \
+ --hf-file phi-2/ggml-model-q4_0.gguf \
+ --model phi-2-q4_0.gguf \
+ --prompt hello \
+ --seed 42 \
+ -ngl 33
+```
+
+Will print:
+
+```shell
+llm_load_tensors: offloaded 33/33 layers to GPU
+...
+llama_new_context_with_model: n_ctx = 512
+...
+llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
+llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
+llama_new_context_with_model: graph nodes = 1225
+llama_new_context_with_model: graph splits = 2
+ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
+ [
+ [
+ [ -0.0181, 0.0272, 0.0272, ...],
+ ],
+ ]
+ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
+ [
+ [
+ [ -0.6989, 1.0636, 1.0636, ...],
+ ],
+ ]
+ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
+ [
+ [
+ [ -0.1800, 0.2817, 0.2632, ...],
+ ],
+ ]
+ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
+ [
+ [
+ [ -0.1863, 0.2970, 0.2604, ...],
+ ],
+ ]
+ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
+ [
+ [
+ [ -1.1238, 1.2876, -1.8086, ...],
+ ],
+ ]
+ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
+ [
+ [
+ [ -1.1135, 1.4604, -1.9226, ...],
+ ],
+ ]
+ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
+ [
+ [
+ [ -1.1135, 1.4604, -1.9226, ...],
+ ],
+ ]
+ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
+ [
+ [
+ [ -1.1135, 1.4604, -1.9226, ...],
+ ],
+ ]
+ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
+ [
+ [
+ [ -1.1135, 1.4604, -1.9226, ...],
+ [ -0.3608, 0.5076, -1.8866, ...],
+ [ 1.7643, 0.0273, -2.1065, ...],
+ ...
+ ],
+ ]
+ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
+ [
+ [
+ [ -1.1135, 1.4604, -1.9226, ...],
+ [ -0.3608, 0.5076, -1.8866, ...],
+ [ 1.7643, 0.0273, -2.1065, ...],
+ ...
+ ],
+ ]
+```
diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp
new file mode 100644
index 00000000..f70d6212
--- /dev/null
+++ b/examples/eval-callback/eval-callback.cpp
@@ -0,0 +1,185 @@
+#include "common.h"
+#include "llama.h"
+#include "ggml.h"
+
+#include <cstdio>
+#include <random>
+#include <string>
+#include <tuple>
+#include <vector>
+
+/**
+ * This the arbitrary data which will be passed to each callback.
+ * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
+ */
+struct callback_data {
+ std::vector<uint8_t> data;
+};
+
+static std::string ggml_ne_string(const ggml_tensor * t) {
+ std::string str;
+ for (int i = 0; i < GGML_MAX_DIMS; ++i) {
+ str += std::to_string(t->ne[i]);
+ if (i + 1 < GGML_MAX_DIMS) {
+ str += ", ";
+ }
+ }
+ return str;
+}
+
+static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
+ float sum = 0;
+ for (int64_t i3 = 0; i3 < ne[3]; i3++) {
+ printf(" [\n");
+ for (int64_t i2 = 0; i2 < ne[2] && i2 < n; i2++) {
+ printf(" [\n");
+ for (int64_t i1 = 0; i1 < ne[1] && i1 < n; i1++) {
+ printf(" [");
+ for (int64_t i0 = 0; i0 < ne[0] && i0 < n; i0++) {
+ size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
+ float v;
+ if (type == GGML_TYPE_F16) {
+ v = ggml_fp16_to_fp32(*(ggml_fp16_t *) data + i);
+ } else if (type == GGML_TYPE_F32) {
+ v = *(float *) data + i;
+ } else if (type == GGML_TYPE_I32) {
+ v = (float) *(int32_t *) data + i;
+ } else if (type == GGML_TYPE_I16) {
+ v = (float) *(int16_t *) data + i;
+ } else if (type == GGML_TYPE_I8) {
+ v = (float) *(int8_t *) data + i;
+ } else {
+ GGML_ASSERT(false);
+ }
+ printf("%8.4f", v);
+ sum += v;
+ if (i0 < ne[0] - 1 && i0 < n - 1) printf(", ");
+ }
+ if (ne[0] > n) printf(", ...");
+ printf("],\n");
+ }
+ if (ne[1] > n) printf(" ...\n");
+ printf(" ],\n");
+ }
+ if (ne[2] > n) printf(" ...\n");
+ printf(" ]\n");
+ printf(" sum = %f\n", sum);
+ }
+}
+
+/**
+ * GGML operations callback during the graph execution.
+ *
+ * @param t current tensor
+ * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
+ * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
+ * see ggml_backend_sched_eval_callback
+ * @param user_data user data to pass at each call back
+ * @return true to receive data or continue the graph, false otherwise
+ */
+static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
+ auto * cb_data = (callback_data *) user_data;
+
+ const struct ggml_tensor * src0 = t->src[0];
+ const struct ggml_tensor * src1 = t->src[1];
+
+ if (ask) {
+ return true; // Always retrieve data
+ }
+
+ char src1_str[128] = {0};
+ if (src1) {
+ sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
+ }
+
+ printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
+ t->name, ggml_type_name(t->type), ggml_op_name(t->op),
+ src0->name, ggml_ne_string(src0).c_str(),
+ src1 ? src1_str : "",
+ ggml_ne_string(t).c_str());
+
+
+ // copy the data from the GPU memory if needed
+ const bool is_host = ggml_backend_buffer_is_host(t->buffer);
+
+ if (!is_host) {
+ auto n_bytes = ggml_nbytes(t);
+ cb_data->data.resize(n_bytes);
+ ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
+ }
+
+ if (!ggml_is_quantized(t->type)) {
+ uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
+ ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
+ }
+
+ return true;
+}
+
+static bool run(llama_context * ctx, const gpt_params & params) {
+ const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
+
+ std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
+
+ if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
+ return false;
+ }
+
+ return true;
+}
+
+int main(int argc, char ** argv) {
+
+ callback_data cb_data;
+
+ gpt_params params;
+ if (!gpt_params_parse(argc, argv, params)) {
+ return 1;
+ }
+
+ print_build_info();
+
+ std::mt19937 rng(params.seed);
+ if (params.random_prompt) {
+ params.prompt = gpt_random_prompt(rng);
+ }
+
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ // pass the callback to the backend scheduler
+ // it will be executed for each node during the graph computation
+ params.cb_eval = ggml_debug;
+ params.cb_eval_user_data = &cb_data;
+ params.warmup = false;
+
+ // init
+ llama_model * model;
+ llama_context * ctx;
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+ if (model == nullptr || ctx == nullptr) {
+ fprintf(stderr, "%s : failed to init\n", __func__);
+ return 1;
+ }
+
+ // print system information
+ {
+ fprintf(stderr, "\n");
+ fprintf(stderr, "%s\n", get_system_info(params).c_str());
+ }
+
+ bool OK = run(ctx, params);
+ if (!OK) {
+ return 1;
+ }
+
+ llama_print_timings(ctx);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ return 0;
+}