summaryrefslogtreecommitdiff
path: root/examples/json-schema-pydantic-example.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /examples/json-schema-pydantic-example.py
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/json-schema-pydantic-example.py')
-rw-r--r--examples/json-schema-pydantic-example.py74
1 files changed, 0 insertions, 74 deletions
diff --git a/examples/json-schema-pydantic-example.py b/examples/json-schema-pydantic-example.py
deleted file mode 100644
index cc64e572..00000000
--- a/examples/json-schema-pydantic-example.py
+++ /dev/null
@@ -1,74 +0,0 @@
-# Usage:
-#! ./llama-server -m some-model.gguf &
-#! pip install pydantic
-#! python json-schema-pydantic-example.py
-
-from pydantic import BaseModel, TypeAdapter
-from annotated_types import MinLen
-from typing import Annotated, List, Optional
-import json, requests
-
-if True:
-
- def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
- '''
- Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
- (llama.cpp server, llama-cpp-python, Anyscale / Together...)
-
- The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
- '''
- if response_model:
- type_adapter = TypeAdapter(response_model)
- schema = type_adapter.json_schema()
- messages = [{
- "role": "system",
- "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
- }] + messages
- response_format={"type": "json_object", "schema": schema}
-
- data = requests.post(endpoint, headers={"Content-Type": "application/json"},
- json=dict(messages=messages, response_format=response_format, **kwargs)).json()
- if 'error' in data:
- raise Exception(data['error']['message'])
-
- content = data["choices"][0]["message"]["content"]
- return type_adapter.validate_json(content) if type_adapter else content
-
-else:
-
- # This alternative branch uses Instructor + OpenAI client lib.
- # Instructor support streamed iterable responses, retry & more.
- # (see https://python.useinstructor.com/)
- #! pip install instructor openai
- import instructor, openai
- client = instructor.patch(
- openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
- mode=instructor.Mode.JSON_SCHEMA)
- create_completion = client.chat.completions.create
-
-
-if __name__ == '__main__':
-
- class QAPair(BaseModel):
- question: str
- concise_answer: str
- justification: str
-
- class PyramidalSummary(BaseModel):
- title: str
- summary: str
- question_answers: Annotated[List[QAPair], MinLen(2)]
- sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
-
- print("# Summary\n", create_completion(
- model="...",
- response_model=PyramidalSummary,
- messages=[{
- "role": "user",
- "content": f"""
- You are a highly efficient corporate document summarizer.
- Create a pyramidal summary of an imaginary internal document about our company processes
- (starting high-level, going down to each sub sections).
- Keep questions short, and answers even shorter (trivia / quizz style).
- """
- }]))