summaryrefslogtreecommitdiff
path: root/examples/llava/clip.cpp
diff options
context:
space:
mode:
authorM. Yusuf Sarıgöz <yusufsarigoz@gmail.com>2023-10-12 18:23:18 +0300
committerGitHub <noreply@github.com>2023-10-12 18:23:18 +0300
commit370359e5baf619f3a8d461023143d1494b1e8fde (patch)
treeacfd94911cdb83780f7afc3a703b8abb31aa00e2 /examples/llava/clip.cpp
parent9e24cc6e2e589d405bd1720c400f5b0b9d0ca3ee (diff)
examples: support LLaVA v1.5 (multimodal model) (#3436)
* WIP: start implementing LLaVA * rm scratch buf for now, will revert after cleanup * LLaVA image encoder is working. will combine with llama * Add llava inference code, but it's buggy. debugging * LLaVA is working e2e, needs to optimize memory allocation + cleanup * Use ggml_allocr + rm unnecessary code * fix: crlf -> lf * fix: new line at EoF * fix: trailing whitespace * Add readme * Update readme * Some cleanup * Are you happy editorconfig? * rm unused batch image preprocessing * rm unused import * fix: rm designated initializers * introduce pad-to-square mode for non-square images * are you happy editorconfig? * gitignore /llava * Handle cases where image file does not exist * add llava target to Makefile * add support for 13b model variant * Maybe seed is unlucky? * Check if apples are compared to apples * are you happy editorconfig? * Use temperature = 0.1 by default * command line: use gpt_params_parse() * minor * handle default n_predict * fix typo * llava : code formatting, rename files, fix compile warnings * do not use Wno-cast-qual for MSVC --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'examples/llava/clip.cpp')
-rw-r--r--examples/llava/clip.cpp1062
1 files changed, 1062 insertions, 0 deletions
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
new file mode 100644
index 00000000..f4258b34
--- /dev/null
+++ b/examples/llava/clip.cpp
@@ -0,0 +1,1062 @@
+// NOTE: This is modified from clip.cpp only for LLaVA,
+// so there might be still unnecessary artifacts hanging around
+// I'll gradually clean and extend it
+
+#include <cassert>
+#include <cmath>
+#include <cstdlib>
+#include <cstring>
+#include <fstream>
+#include <iostream>
+#include <map>
+#include <regex>
+#include <stdexcept>
+#include <vector>
+
+#include "clip.h"
+#include "ggml.h"
+#include "ggml-alloc.h"
+
+#define STB_IMAGE_IMPLEMENTATION
+#include "stb_image.h"
+
+#define CLIP_DEBUG
+
+static std::string format(const char * fmt, ...) {
+ va_list ap;
+ va_list ap2;
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ int size = vsnprintf(NULL, 0, fmt, ap);
+ GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
+ std::vector<char> buf(size + 1);
+ int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
+ GGML_ASSERT(size2 == size);
+ va_end(ap2);
+ va_end(ap);
+ return std::string(buf.data(), buf.size());
+}
+
+//
+// key constants
+//
+
+#define KEY_FTYPE "general.file_type"
+#define KEY_NAME "general.name"
+#define KEY_DESCRIPTION "general.description"
+#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
+#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
+#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
+#define KEY_USE_GELU "clip.use_gelu"
+#define KEY_N_EMBD "clip.%s.embedding_length"
+#define KEY_N_FF "clip.%s.feed_forward_length"
+#define KEY_N_BLOCK "clip.%s.block_count"
+#define KEY_N_HEAD "clip.%s.attention.head_count"
+#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
+#define KEY_PROJ_DIM "clip.%s.projection_dim"
+#define KEY_TOKENS "tokenizer.ggml.tokens"
+#define KEY_N_POSITIONS "clip.text.context_length"
+#define KEY_IMAGE_SIZE "clip.vision.image_size"
+#define KEY_PATCH_SIZE "clip.vision.patch_size"
+#define KEY_IMAGE_MEAN "clip.vision.image_mean"
+#define KEY_IMAGE_STD "clip.vision.image_std"
+
+//
+// tensor name constants
+//
+
+#define TN_TOKEN_EMBD "%s.token_embd.weight"
+#define TN_POS_EMBD "%s.position_embd.weight"
+#define TN_CLASS_EMBD "v.class_embd"
+#define TN_PATCH_EMBD "v.patch_embd.weight"
+#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
+#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
+#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
+#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
+#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
+#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
+#define TN_LN_1 "%s.blk.%d.ln1.%s"
+#define TN_LN_2 "%s.blk.%d.ln2.%s"
+#define TN_LN_PRE "%s.pre_ln.%s"
+#define TN_LN_POST "%s.post_ln.%s"
+#define TN_TEXT_PROJ "text_projection.weight"
+#define TN_VIS_PROJ "visual_projection.weight"
+#define TN_LLAVA_PROJ "mm.%d.%s"
+
+//
+// utilities to get data from a gguf file
+//
+
+static int get_key_idx(const gguf_context * ctx, const char * key) {
+ int i = gguf_find_key(ctx, key);
+ if (i == -1) {
+ fprintf(stderr, "key %s not found in file\n", key);
+ throw std::runtime_error(format("Missing required key: %s", key));
+ }
+
+ return i;
+}
+
+static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
+ const int i = get_key_idx(ctx, key.c_str());
+
+ return gguf_get_val_u32(ctx, i);
+}
+
+static float get_f32(const gguf_context * ctx, const std::string & key) {
+ const int i = get_key_idx(ctx, key.c_str());
+
+ return gguf_get_val_f32(ctx, i);
+}
+
+static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
+ struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
+ if (!cur) {
+ printf("unable to find tensor %s\n", name.c_str());
+ throw std::runtime_error(format("unable to find tensor %s\n", name.c_str()));
+ }
+
+ return cur;
+}
+
+static std::string get_ftype(int ftype) {
+ switch (ftype) {
+ case 0:
+ return "f32";
+ case 1:
+ return "f16";
+ case 2:
+ return "q4_0";
+ case 3:
+ return "q4_1";
+ case 6:
+ return "q5_0";
+ case 7:
+ return "q5_1";
+ case 8:
+ return "q8_0";
+ default:
+ throw std::runtime_error(format("Unrecognized file type: %d\n", ftype));
+ }
+}
+
+//
+// clip layers
+//
+
+struct clip_layer {
+ // attention
+ struct ggml_tensor * k_w;
+ struct ggml_tensor * k_b;
+ struct ggml_tensor * q_w;
+ struct ggml_tensor * q_b;
+ struct ggml_tensor * v_w;
+ struct ggml_tensor * v_b;
+
+ struct ggml_tensor * o_w;
+ struct ggml_tensor * o_b;
+
+ // layernorm 1
+ struct ggml_tensor * ln_1_w;
+ struct ggml_tensor * ln_1_b;
+
+ // ff
+ struct ggml_tensor * ff_i_w;
+ struct ggml_tensor * ff_i_b;
+
+ struct ggml_tensor * ff_o_w;
+ struct ggml_tensor * ff_o_b;
+
+ // layernorm 2
+ struct ggml_tensor * ln_2_w;
+ struct ggml_tensor * ln_2_b;
+};
+
+struct clip_vision_model {
+ struct clip_vision_hparams hparams;
+
+ // embeddings
+ struct ggml_tensor * class_embedding;
+ struct ggml_tensor * patch_embeddings;
+ struct ggml_tensor * position_embeddings;
+
+ struct ggml_tensor * pre_ln_w;
+ struct ggml_tensor * pre_ln_b;
+
+ std::vector<clip_layer> layers;
+
+ struct ggml_tensor * post_ln_w;
+ struct ggml_tensor * post_ln_b;
+
+ struct ggml_tensor * projection;
+
+ // LLaVA projection
+ struct ggml_tensor * mm_0_w;
+ struct ggml_tensor * mm_0_b;
+ struct ggml_tensor * mm_2_w;
+ struct ggml_tensor * mm_2_b;
+};
+
+// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
+struct clip_buffer {
+ uint8_t * data = NULL;
+ size_t size = 0;
+
+ void resize(size_t size) {
+ delete[] data;
+ data = new uint8_t[size];
+ this->size = size;
+ }
+
+ ~clip_buffer() { delete[] data; }
+};
+
+struct clip_ctx {
+ bool has_text_encoder = false;
+ bool has_vision_encoder = false;
+ bool has_llava_projector = false;
+ struct clip_vision_model vision_model;
+ float image_mean[3];
+ float image_std[3];
+ bool use_gelu = false;
+ int32_t ftype = 1;
+ struct ggml_context * ctx;
+ struct gguf_context * ctx_gguf;
+
+ // memory buffers to evaluate the model
+ clip_buffer buf_compute;
+ clip_buffer buf_alloc;
+ ggml_allocr * alloc = NULL;
+};
+
+static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_image_f32_batch * imgs) {
+ if (!ctx->has_vision_encoder) {
+ printf("This gguf file seems to have no vision encoder\n");
+ return nullptr;
+ }
+
+ const auto & model = ctx->vision_model;
+ const auto & hparams = model.hparams;
+
+ const int image_size = hparams.image_size;
+ const int patch_size = hparams.patch_size;
+ const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
+ const int num_positions = num_patches + 1;
+ const int hidden_size = hparams.hidden_size;
+ const int n_head = hparams.n_head;
+ const int d_head = hidden_size / n_head;
+ const int n_layer = hparams.n_layer;
+ //const int n_intermediate = hparams.n_intermediate;
+ //const int projection_dim = hparams.projection_dim;
+ const float eps = hparams.eps;
+ int batch_size = imgs->size;
+ if(ctx->has_llava_projector) {
+ GGML_ASSERT(batch_size == 1);
+ }
+
+ const auto & buf_compute = ctx->buf_compute;
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_compute.size,
+ /*.mem_buffer =*/ buf_compute.data,
+ /*.no_alloc =*/ false,
+ };
+
+ params.no_alloc = true;
+
+ struct ggml_context * ctx0 = ggml_init(params);
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
+ ggml_allocr_alloc(ctx->alloc, inp_raw);
+
+ if (!ggml_allocr_is_measure(ctx->alloc)) {
+ float * data = (float *)ggml_get_data(inp_raw);
+
+ for (size_t i = 0; i < imgs->size; i++) {
+ const int nx = imgs->data[i].nx;
+ const int ny = imgs->data[i].ny;
+ GGML_ASSERT(nx == image_size && ny == image_size);
+
+ const int n = nx * ny;
+
+ for (int b = 0; b < batch_size; b++) {
+ for (int k = 0; k < 3; k++) {
+ for (int y = 0; y < ny; y++) {
+ for (int x = 0; x < nx; x++) {
+ data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].data[3 * (y * nx + x) + k];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+
+ inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
+ inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
+
+ // concat class_embeddings and patch_embeddings
+ struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
+ ggml_allocr_alloc(ctx->alloc, embeddings);
+ if (!ggml_allocr_is_measure(ctx->alloc)) {
+ ggml_set_zero(embeddings);
+ }
+
+ struct ggml_tensor * temp = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size);
+ ggml_allocr_alloc(ctx->alloc, temp);
+
+ embeddings = ggml_acc(ctx0, embeddings, ggml_repeat(ctx0, model.class_embedding, temp), embeddings->nb[1],
+ embeddings->nb[2], embeddings->nb[3], 0);
+ embeddings =
+ ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
+
+ struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
+ ggml_allocr_alloc(ctx->alloc, positions);
+ if (!ggml_allocr_is_measure(ctx->alloc)) {
+ for (int i = 0; i < num_positions; i++) {
+ ggml_set_i32_1d(positions, i, i);
+ }
+ }
+
+ embeddings =
+ ggml_add(ctx0, embeddings, ggml_repeat(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings));
+
+ // pre-layernorm
+ {
+ embeddings = ggml_norm(ctx0, embeddings, eps);
+
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.pre_ln_w, embeddings), embeddings),
+ ggml_repeat(ctx0, model.pre_ln_b, embeddings));
+ }
+
+ struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ ggml_allocr_alloc(ctx->alloc, KQ_scale);
+ if (!ggml_allocr_is_measure(ctx->alloc)) {
+ ggml_set_f32(KQ_scale, 1.0f / sqrt((float)d_head));
+ }
+
+ // loop over layers
+ for (int il = 0; il < n_layer - 1; il++) {
+ struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
+
+ //const size_t nb_q_w = model.layers[il].q_w->nb[0];
+
+ // layernorm1
+ {
+ cur = ggml_norm(ctx0, cur, eps);
+
+ cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur),
+ ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
+ }
+
+ // self-attention
+ {
+
+ struct ggml_tensor * Q =
+ ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
+
+ Q = ggml_scale_inplace(ctx0, Q, KQ_scale);
+ Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
+ Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
+ Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
+
+ struct ggml_tensor * K =
+ ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur));
+
+ K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
+ K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
+ K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
+
+ struct ggml_tensor * V =
+ ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur));
+
+ V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
+ V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
+ V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
+
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ KQ = ggml_soft_max_inplace(ctx0, KQ);
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
+ KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
+ KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
+
+ cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size));
+ }
+
+ // attention output
+ cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
+
+ // re-add the layer input, e.g., residual
+ cur = ggml_add(ctx0, cur, embeddings);
+
+ embeddings = cur; // embeddings = residual, cur = hidden_states
+
+ // layernorm2
+ {
+ cur = ggml_norm(ctx0, cur, eps);
+
+ cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur),
+ ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
+ }
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
+ cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur);
+
+ if (ctx->use_gelu) {
+ cur = ggml_gelu_inplace(ctx0, cur);
+ } else {
+ cur = ggml_gelu_quick_inplace(ctx0, cur);
+ }
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
+ cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur);
+
+ // residual 2
+ cur = ggml_add(ctx0, embeddings, cur);
+
+ embeddings = cur;
+ }
+
+ // llava projector
+ {
+ embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
+
+ struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
+ ggml_allocr_alloc(ctx->alloc, patches);
+ if (!ggml_allocr_is_measure(ctx->alloc)) {
+ for (int i = 0; i < num_patches; ++i) {
+ ggml_set_i32_1d(patches, i, i+1);
+ }
+ }
+
+ embeddings = ggml_get_rows(ctx0, embeddings, patches);
+
+ // mm projection 0
+ embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+ embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_0_b, embeddings), embeddings);
+
+ embeddings = ggml_gelu(ctx0, embeddings);
+
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_2_b, embeddings), embeddings);
+ }
+
+ // build the graph
+ ggml_build_forward_expand(gf, embeddings);
+
+ ggml_free(ctx0);
+
+ return gf;
+}
+
+// read and create ggml_context containing the tensors and their data
+struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
+
+ struct ggml_context * meta = NULL;
+
+ struct gguf_init_params params = {
+ /*.no_alloc = */ true,
+ /*.ctx = */ &meta,
+ };
+
+ struct gguf_context * ctx = gguf_init_from_file(fname, params);
+
+ if (verbosity >= 1) {
+ const int n_tensors = gguf_get_n_tensors(ctx);
+ const int n_kv = gguf_get_n_kv(ctx);
+ const int ftype = get_u32(ctx, KEY_FTYPE);
+ const std::string ftype_str = get_ftype(ftype);
+ const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
+ const std::string description = gguf_get_val_str(ctx, idx_desc);
+ const int idx_name = gguf_find_key(ctx, KEY_NAME);
+ if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
+ const std::string name = gguf_get_val_str(ctx, idx_name);
+ printf("%s: model name: %s\n", __func__, name.c_str());
+ }
+ printf("%s: description: %s\n", __func__, description.c_str());
+ printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
+ printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
+ printf("%s: n_tensors: %d\n", __func__, n_tensors);
+ printf("%s: n_kv: %d\n", __func__, n_kv);
+ printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
+ printf("\n");
+ }
+
+ // kv
+ if (verbosity >= 3) {
+ const int n_kv = gguf_get_n_kv(ctx);
+
+ for (int i = 0; i < n_kv; ++i) {
+ const char * key = gguf_get_key(ctx, i);
+
+ printf("%s: kv[%d]: key = %s\n", __func__, i, key);
+ }
+ printf("\n");
+ }
+
+ // data
+ size_t ctx_size = 0;
+ {
+ const int n_tensors = gguf_get_n_tensors(ctx);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name(ctx, i);
+ const size_t offset = gguf_get_tensor_offset(ctx, i);
+
+ struct ggml_tensor * cur = ggml_get_tensor(meta, name);
+ ctx_size += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
+ size_t tensor_size = ggml_nbytes(cur);
+ size_t padded_size = ggml_nbytes_pad(cur);
+ ctx_size += padded_size;
+ if (verbosity >= 3) {
+ printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
+ cur->n_dims, cur->name, tensor_size, padded_size, offset);
+ }
+ }
+ }
+
+ clip_ctx * new_clip = new clip_ctx;
+
+ // model size and capabilities
+ {
+ int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
+ new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
+
+ idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
+ new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
+
+ idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
+ if (idx != -1) {
+ new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
+ }
+
+ GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
+ GGML_ASSERT(new_clip->has_vision_encoder);
+ GGML_ASSERT(!new_clip->has_text_encoder);
+
+ idx = get_key_idx(ctx, KEY_USE_GELU);
+ new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
+
+ if (verbosity >= 1) {
+ printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
+ printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
+ printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
+ printf("%s: model size: %.2f MB\n", __func__, (ctx_size / 1024.0 / 1024.0));
+ printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
+ }
+ }
+
+ // load tensors
+ {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ ctx_size,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ false,
+ };
+
+ new_clip->ctx = ggml_init(params);
+ if (!new_clip->ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ clip_free(new_clip);
+ return nullptr;
+ }
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ if (!fin) {
+ printf("cannot open model file for loading tensors\n");
+ clip_free(new_clip);
+ return nullptr;
+ }
+
+ const int n_tensors = gguf_get_n_tensors(ctx);
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name(ctx, i);
+ struct ggml_tensor * t = ggml_get_tensor(meta, name);
+ struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx, t);
+ ggml_set_name(cur, name);
+
+ const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
+ fin.seekg(offset, std::ios::beg);
+ if (!fin) {
+ printf("%s: failed to seek for tensor %s\n", __func__, name);
+ clip_free(new_clip);
+ return nullptr;
+ }
+
+ fin.read(reinterpret_cast<char *>(cur->data), ggml_nbytes(t));
+ }
+
+ fin.close();
+ }
+
+ // vision model
+ if (new_clip->has_vision_encoder) {
+ // load vision model
+ auto & vision_model = new_clip->vision_model;
+ auto & hparams = vision_model.hparams;
+ hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
+ hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
+ hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
+ hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
+ hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
+ hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
+ hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
+ hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
+
+ int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
+ int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
+ for (int i = 0; i < 3; ++i) {
+ new_clip->image_mean[i] = *((float *)gguf_get_arr_data(ctx, idx_mean));
+ new_clip->image_std[i] = *((float *)gguf_get_arr_data(ctx, idx_std));
+ }
+
+ if (verbosity >= 2) {
+ printf("\n%s: vision model hparams\n", __func__);
+ printf("image_size %d\n", hparams.image_size);
+ printf("patch_size %d\n", hparams.patch_size);
+ printf("v_hidden_size %d\n", hparams.hidden_size);
+ printf("v_n_intermediate %d\n", hparams.n_intermediate);
+ printf("v_projection_dim %d\n", hparams.projection_dim);
+ printf("v_n_head %d\n", hparams.n_head);
+ printf("v_n_layer %d\n", hparams.n_layer);
+ }
+
+ vision_model.patch_embeddings = get_tensor(new_clip->ctx, TN_PATCH_EMBD);
+ vision_model.class_embedding = get_tensor(new_clip->ctx, TN_CLASS_EMBD);
+ vision_model.position_embeddings = get_tensor(new_clip->ctx, format(TN_POS_EMBD, "v"));
+ vision_model.pre_ln_w = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "weight"));
+ vision_model.pre_ln_b = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "bias"));
+ vision_model.mm_0_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "weight"));
+ vision_model.mm_0_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "bias"));
+ vision_model.mm_2_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "weight"));
+ vision_model.mm_2_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "bias"));
+
+ vision_model.layers.resize(hparams.n_layer);
+ for (int il = 0; il < hparams.n_layer; ++il) {
+ auto & layer = vision_model.layers[il];
+ layer.k_w = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "weight"));
+ layer.q_w = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "weight"));
+ layer.v_w = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "weight"));
+ layer.o_w = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "weight"));
+ layer.ln_1_w = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "weight"));
+ layer.ln_2_w = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "weight"));
+ layer.ff_i_w = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "weight"));
+ layer.ff_o_w = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "weight"));
+ layer.k_b = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "bias"));
+ layer.q_b = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "bias"));
+ layer.v_b = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "bias"));
+ layer.o_b = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "bias"));
+ layer.ln_1_b = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "bias"));
+ layer.ln_2_b = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "bias"));
+ layer.ff_i_b = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "bias"));
+ layer.ff_o_b = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "bias"));
+ }
+ }
+
+ ggml_free(meta);
+
+ new_clip->ctx_gguf = ctx;
+
+// measure mem requirement and allocate
+ {
+ static const size_t tensor_alignment = 32;
+ new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
+ new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
+ clip_image_f32_batch batch;
+ batch.size = 1;
+ ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
+ size_t alloc_size = ggml_allocr_alloc_graph(new_clip->alloc, gf) + tensor_alignment;
+ ggml_allocr_free(new_clip->alloc);
+ new_clip->buf_alloc.resize(alloc_size);
+ new_clip->alloc = ggml_allocr_new(new_clip->buf_alloc.data, new_clip->buf_alloc.size, tensor_alignment);
+
+ printf("%s: total allocated memory: %.2f MB\n", __func__, (new_clip->buf_compute.size + alloc_size)/1024.0/1024.0);
+ }
+
+ return new_clip;
+}
+
+clip_image_u8 * make_clip_image_u8() { return new clip_image_u8(); }
+
+clip_image_f32 * make_clip_image_f32() { return new clip_image_f32(); }
+
+bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
+ int nx, ny, nc;
+ auto data = stbi_load(fname, &nx, &ny, &nc, 3);
+ if (!data) {
+ fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname);
+ return false;
+ }
+
+ img->nx = nx;
+ img->ny = ny;
+ img->size = nx * ny * 3;
+ img->data = new uint8_t[img->size]();
+ memcpy(img->data, data, img->size);
+
+ stbi_image_free(data);
+
+ return true;
+}
+
+// normalize: x = (x - mean) / std
+// TODO: implement bicubic interpolation instead of linear.
+bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
+ if (!ctx->has_vision_encoder) {
+ printf("This gguf file seems to have no vision encoder\n");
+ return false;
+ }
+
+ // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
+ // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
+
+ clip_image_u8 temp; // we will keep the input image data here temporarily
+ if (pad2square && img->nx != img->ny) {
+ int longer_side = std::max(img->nx, img->ny);
+ temp.nx = longer_side;
+ temp.ny = longer_side;
+ temp.size = 3 * longer_side * longer_side;
+ temp.data = new uint8_t[temp.size]();
+ uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
+
+ // fill with background color
+ for (size_t i = 0; i < temp.size; i++) {
+ temp.data[i] = bc[i % 3];
+ }
+
+ // copy from the input image
+ for (int y = 0; y < img->ny; y++) {
+ for (int x = 0; x < img->nx; x++) {
+ const int i = 3 * (y * img->nx + x);
+ const int j = 3 * (y * temp.nx + x);
+ temp.data[j] = img->data[i];
+ temp.data[j+1] = img->data[i+1];
+ temp.data[j+2] = img->data[i+2];
+ }
+ }
+ } else {
+ temp.nx = img->nx;
+ temp.ny = img->ny;
+ temp.size = img->size;
+ temp.data = img->data;
+ }
+
+ const int nx = temp.nx;
+ const int ny = temp.ny;
+
+ const int nx2 = ctx->vision_model.hparams.image_size;
+ const int ny2 = ctx->vision_model.hparams.image_size;
+
+ res->nx = nx2;
+ res->ny = ny2;
+ res->size = 3 * nx2 * ny2;
+ res->data = new float[res->size]();
+
+ const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
+
+ const int nx3 = int(nx / scale + 0.5f);
+ const int ny3 = int(ny / scale + 0.5f);
+
+ const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
+ const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
+
+ for (int y = 0; y < ny3; y++) {
+ for (int x = 0; x < nx3; x++) {
+ for (int c = 0; c < 3; c++) {
+ // linear interpolation
+ const float sx = (x + 0.5f) * scale - 0.5f;
+ const float sy = (y + 0.5f) * scale - 0.5f;
+
+ const int x0 = std::max(0, (int)std::floor(sx));
+ const int y0 = std::max(0, (int)std::floor(sy));
+
+ const int x1 = std::min(x0 + 1, nx - 1);
+ const int y1 = std::min(y0 + 1, ny - 1);
+
+ const float dx = sx - x0;
+ const float dy = sy - y0;
+
+ const int j00 = 3 * (y0 * nx + x0) + c;
+ const int j01 = 3 * (y0 * nx + x1) + c;
+ const int j10 = 3 * (y1 * nx + x0) + c;
+ const int j11 = 3 * (y1 * nx + x1) + c;
+
+ const float v00 = temp.data[j00];
+ const float v01 = temp.data[j01];
+ const float v10 = temp.data[j10];
+ const float v11 = temp.data[j11];
+
+ const float v0 = v00 * (1.0f - dx) + v01 * dx;
+ const float v1 = v10 * (1.0f - dx) + v11 * dx;
+
+ const float v = v0 * (1.0f - dy) + v1 * dy;
+
+ const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
+
+ const int i = 3 * (y * nx3 + x) + c;
+
+ res->data[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
+ }
+ }
+ }
+
+ return true;
+}
+
+void clip_free(clip_ctx * ctx) {
+ ggml_free(ctx->ctx);
+ gguf_free(ctx->ctx_gguf);
+ delete ctx;
+}
+
+bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
+ if (!ctx->has_vision_encoder) {
+ printf("This gguf file seems to have no vision encoder\n");
+ return false;
+ }
+
+ clip_image_f32_batch imgs{};
+ imgs.size = 1;
+ imgs.data = img;
+ return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
+}
+
+bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
+
+ if (!ctx->has_vision_encoder) {
+ printf("This gguf file seems to have no vision encoder\n");
+ return false;
+ }
+
+ int batch_size = imgs->size;
+ if(ctx->has_llava_projector) {
+ GGML_ASSERT(batch_size == 1); // TODO: support multiple images
+ }
+
+ // reset alloc buffer to clean the memory from previous invocations
+ ggml_allocr_reset(ctx->alloc);
+
+ // build the inference graph
+ ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
+ ggml_allocr_alloc_graph(ctx->alloc, gf);
+
+ struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
+ if (plan.work_size > 0) {
+ plan.work_data = (uint8_t *)malloc(plan.work_size);
+ }
+
+ ggml_graph_compute(gf, &plan);
+
+ // the last node is the embedding tensor
+struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
+
+ // copy the embeddings to the location passed by the user
+ memcpy(vec, ggml_get_data_f32(embeddings), ggml_nbytes(embeddings));
+
+ if (plan.work_size > 0) {
+ free(plan.work_data);
+ }
+
+ return true;
+}
+
+bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
+
+ ggml_type type = GGML_TYPE_Q4_1;
+
+ switch (itype) {
+ case 2:
+ type = GGML_TYPE_Q4_0;
+ break;
+ case 3:
+ type = GGML_TYPE_Q4_1;
+ break;
+ case 6:
+ type = GGML_TYPE_Q5_0;
+ break;
+ case 7:
+ type = GGML_TYPE_Q5_1;
+ break;
+ case 8:
+ type = GGML_TYPE_Q8_0;
+ break;
+ default:
+ fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
+ return false;
+ };
+
+ auto ctx_clip = clip_model_load(fname_inp, 2);
+ const auto & ctx_src = ctx_clip->ctx_gguf;
+ const auto & ctx_data = ctx_clip->ctx;
+
+ auto ctx_out = gguf_init_empty();
+ gguf_set_kv(ctx_out, ctx_src);
+ gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
+ gguf_set_val_u32(ctx_out, "general.file_type", itype);
+
+ auto fout = std::ofstream(fname_out, std::ios::binary);
+
+ const int n_tensors = gguf_get_n_tensors(ctx_src);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name(ctx_src, i);
+ struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
+ gguf_add_tensor(ctx_out, cur);
+ }
+
+ const size_t meta_size = gguf_get_meta_size(ctx_out);
+ for (size_t i = 0; i < meta_size; ++i) {
+ fout.put(0);
+ }
+
+ // regexes of tensor names to be quantized
+ const std::vector<std::string> k_names = {
+ ".*weight",
+ };
+
+ std::vector<uint8_t> read_data(512);
+ std::vector<uint8_t> work(512);
+ std::vector<float> conv_buf(512);
+ std::vector<int64_t> hist_all(1 << 4, 0);
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+
+ for (int i = 0; i < n_tensors; ++i) {
+ const std::string name = gguf_get_tensor_name(ctx_src, i);
+ struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
+
+ enum ggml_type new_type;
+ void * new_data;
+ size_t new_size;
+
+ bool quantize = false;
+ for (const auto & s : k_names) {
+ if (std::regex_match(name, std::regex(s))) {
+ quantize = true;
+ break;
+ }
+ }
+
+ // quantize only 2D tensors
+ quantize &= (cur->n_dims == 2);
+
+ if (quantize) {
+ new_type = type;
+ const size_t n_elms = ggml_nelements(cur);
+ float * f32_data;
+
+ switch (cur->type) {
+ case GGML_TYPE_F32:
+ f32_data = (float *)cur->data;
+ break;
+ case GGML_TYPE_F16:
+ if (conv_buf.size() < n_elms) {
+ conv_buf.resize(n_elms);
+ }
+ for (size_t j = 0; j < n_elms; ++j) {
+ conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
+ }
+ f32_data = (float *)conv_buf.data();
+ break;
+ default:
+ printf("Please use an input file in f32 or f16\n");
+ return false;
+ }
+
+ if (work.size() < n_elms * 4) {
+ work.resize(n_elms * 4);
+ }
+ new_data = work.data();
+
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ switch (new_type) {
+ case GGML_TYPE_Q4_0: {
+ new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
+ } break;
+ case GGML_TYPE_Q4_1: {
+ new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
+ } break;
+ case GGML_TYPE_Q5_0: {
+ new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
+ } break;
+ case GGML_TYPE_Q5_1: {
+ new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
+ } break;
+ case GGML_TYPE_Q8_0: {
+ new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
+ } break;
+ default: {
+ fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
+ return false;
+ }
+ }
+
+ for (size_t j = 0; j < hist_cur.size(); ++j) {
+ hist_all[j] += hist_cur[j];
+ }
+ } else {
+ new_type = cur->type;
+ new_data = cur->data;
+ new_size = ggml_nbytes(cur);
+ }
+ const size_t orig_size = ggml_nbytes(cur);
+ total_size_org += orig_size;
+ total_size_new += new_size;
+ gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
+ gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
+ fout.write((const char *)new_data, new_size);
+ size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
+ for (size_t j = 0; j < pad; ++j) {
+ fout.put(0);
+ }
+
+ printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), cur->n_dims, quantize,
+ orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
+ }
+
+ // go back to beginning of file and write the updated metadata
+ fout.seekp(0, std::ios::beg);
+ std::vector<uint8_t> meta(meta_size);
+ gguf_get_meta_data(ctx_out, meta.data());
+ fout.write((const char *)meta.data(), meta_size);
+
+ fout.close();
+
+ clip_free(ctx_clip);
+ gguf_free(ctx_out);
+
+ {
+ printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
+ printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
+
+ int64_t sum_all = 0;
+ for (size_t i = 0; i < hist_all.size(); ++i) {
+ sum_all += hist_all[i];
+ }
+
+ printf("%s: hist: ", __func__);
+ for (size_t i = 0; i < hist_all.size(); ++i) {
+ printf("%5.3f ", hist_all[i] / (float)sum_all);
+ }
+ printf("\n");
+ }
+
+ return true;
+}
+
+int clip_n_mmproj_embd(struct clip_ctx * ctx) {
+ return ctx->vision_model.mm_2_b->ne[0];
+}
+
+int clip_n_patches(struct clip_ctx * ctx) {
+ auto & params = ctx->vision_model.hparams;
+
+ return (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
+}
+
+size_t clip_embd_nbytes(struct clip_ctx * ctx) {
+ return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
+}