summaryrefslogtreecommitdiff
path: root/examples/llava/clip.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-12 15:14:32 +0200
committerGitHub <noreply@github.com>2024-08-12 15:14:32 +0200
commit8f43e551038af2547b5c01d0e9edd641c0e4bd29 (patch)
tree07a4373620a9381d0b5c7189a475990a6feb48a5 /examples/llava/clip.cpp
parentf5d1af61d79fb53ccfbac2e665e43208c07b083d (diff)
Merge mainline - Aug 12 2024 (#17)
* Merge mainline * Fix after merge * Remove CI check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/llava/clip.cpp')
-rw-r--r--examples/llava/clip.cpp629
1 files changed, 551 insertions, 78 deletions
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index d23e282f..54aa822c 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -74,26 +74,27 @@ static std::string format(const char * fmt, ...) {
// key constants
//
-#define KEY_FTYPE "general.file_type"
-#define KEY_NAME "general.name"
-#define KEY_DESCRIPTION "general.description"
-#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
-#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
-#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
-#define KEY_USE_GELU "clip.use_gelu"
-#define KEY_N_EMBD "clip.%s.embedding_length"
-#define KEY_N_FF "clip.%s.feed_forward_length"
-#define KEY_N_BLOCK "clip.%s.block_count"
-#define KEY_N_HEAD "clip.%s.attention.head_count"
-#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
-#define KEY_PROJ_DIM "clip.%s.projection_dim"
-#define KEY_TOKENS "tokenizer.ggml.tokens"
-#define KEY_N_POSITIONS "clip.text.context_length"
-#define KEY_IMAGE_SIZE "clip.vision.image_size"
-#define KEY_PATCH_SIZE "clip.vision.patch_size"
-#define KEY_IMAGE_MEAN "clip.vision.image_mean"
-#define KEY_IMAGE_STD "clip.vision.image_std"
-#define KEY_PROJ_TYPE "clip.projector_type"
+#define KEY_FTYPE "general.file_type"
+#define KEY_NAME "general.name"
+#define KEY_DESCRIPTION "general.description"
+#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
+#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
+#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
+#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
+#define KEY_USE_GELU "clip.use_gelu"
+#define KEY_N_EMBD "clip.%s.embedding_length"
+#define KEY_N_FF "clip.%s.feed_forward_length"
+#define KEY_N_BLOCK "clip.%s.block_count"
+#define KEY_N_HEAD "clip.%s.attention.head_count"
+#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
+#define KEY_PROJ_DIM "clip.%s.projection_dim"
+#define KEY_TOKENS "tokenizer.ggml.tokens"
+#define KEY_N_POSITIONS "clip.text.context_length"
+#define KEY_IMAGE_SIZE "clip.vision.image_size"
+#define KEY_PATCH_SIZE "clip.vision.patch_size"
+#define KEY_IMAGE_MEAN "clip.vision.image_mean"
+#define KEY_IMAGE_STD "clip.vision.image_std"
+#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@@ -127,12 +128,20 @@ static std::string format(const char * fmt, ...) {
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
+#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
+#define TN_MINICPMV_QUERY "resampler.query"
+#define TN_MINICPMV_PROJ "resampler.proj.weight"
+#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
+#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
+#define TN_MINICPMV_LN "resampler.ln_%s.%s"
+
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
+ PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -140,6 +149,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
+ { PROJECTOR_TYPE_RESAMPLER, "resampler"},
};
@@ -200,17 +210,14 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
}
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- std::string result;
- for (size_t pos = 0; ; pos += search.length()) {
- auto new_pos = s.find(search, pos);
- if (new_pos == std::string::npos) {
- result += s.substr(pos, s.size() - pos);
- break;
- }
- result += s.substr(pos, new_pos - pos) + replace;
- pos = new_pos;
+ if (search.empty()) {
+ return; // Avoid infinite loop if 'search' is an empty string
+ }
+ size_t pos = 0;
+ while ((pos = s.find(search, pos)) != std::string::npos) {
+ s.replace(pos, search.length(), replace);
+ pos += replace.length();
}
- s = std::move(result);
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
@@ -492,12 +499,33 @@ struct clip_vision_model {
struct ggml_tensor * mm_model_mlp_2_b;
struct ggml_tensor * mm_model_peg_0_w;
struct ggml_tensor * mm_model_peg_0_b;
+
+ // MINICPMV projection
+ struct ggml_tensor * mm_model_pos_embed_k;
+ struct ggml_tensor * mm_model_query;
+ struct ggml_tensor * mm_model_proj;
+ struct ggml_tensor * mm_model_kv_proj;
+ struct ggml_tensor * mm_model_attn_q_w;
+ struct ggml_tensor * mm_model_attn_q_b;
+ struct ggml_tensor * mm_model_attn_k_w;
+ struct ggml_tensor * mm_model_attn_k_b;
+ struct ggml_tensor * mm_model_attn_v_w;
+ struct ggml_tensor * mm_model_attn_v_b;
+ struct ggml_tensor * mm_model_attn_o_w;
+ struct ggml_tensor * mm_model_attn_o_b;
+ struct ggml_tensor * mm_model_ln_q_w;
+ struct ggml_tensor * mm_model_ln_q_b;
+ struct ggml_tensor * mm_model_ln_kv_w;
+ struct ggml_tensor * mm_model_ln_kv_b;
+ struct ggml_tensor * mm_model_ln_post_w;
+ struct ggml_tensor * mm_model_ln_post_b;
};
struct clip_ctx {
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_llava_projector = false;
+ bool has_minicpmv_projector = false;
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
@@ -522,9 +550,11 @@ struct clip_ctx {
ggml_backend_t backend = NULL;
ggml_gallocr_t compute_alloc = NULL;
+
+ struct clip_image_size * load_image_size;
};
-static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
+static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
return nullptr;
@@ -533,20 +563,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
+ const int image_size = hparams.image_size;
+ int image_size_width = image_size;
+ int image_size_height = image_size;
+ if (ctx->has_minicpmv_projector) {
+ if (load_image_size == nullptr) {
+ load_image_size = clip_image_size_init();
+ }
+ LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
+ image_size_width = load_image_size->width;
+ image_size_height = load_image_size->height;
+ if (is_inf) {
+ image_size_width = imgs->data->nx;
+ image_size_height = imgs->data->ny;
+ }
+ }
const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
- const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
+ const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
+ int n_layer = hparams.n_layer;
const float eps = hparams.eps;
const int batch_size = imgs->size;
- if (ctx->has_llava_projector) {
+ if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
GGML_ASSERT(batch_size == 1);
}
@@ -559,7 +602,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
+ struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
@@ -572,19 +615,21 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
-
- // concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = inp;
- if (ctx->has_class_embedding) {
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_set_name(embeddings, "embeddings");
- ggml_set_input(embeddings);
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
+ struct ggml_tensor * pos_embed = nullptr;
+ if (ctx->has_llava_projector) {
+ // concat class_embeddings and patch_embeddings
+ if (ctx->has_class_embedding) {
+ embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
+ ggml_set_name(embeddings, "embeddings");
+ ggml_set_input(embeddings);
+ embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
+ embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
+ embeddings = ggml_acc(ctx0, embeddings, inp,
+ embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
+ }
+ }
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
@@ -593,6 +638,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings =
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
+ if (ctx->has_minicpmv_projector) {
+ int pos_w = image_size_width/patch_size;
+ int pos_h = image_size_height/patch_size;
+ pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
+ ggml_set_name(pos_embed, "pos_embed");
+ ggml_set_input(pos_embed);
+ }
+
// pre-layernorm
if (ctx->has_pre_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
@@ -602,6 +655,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
}
// loop over layers
+ if (ctx->has_minicpmv_projector) {
+ n_layer += 1;
+ }
for (int il = 0; il < n_layer - 1; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
@@ -691,7 +747,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
}
// llava projector
- {
+ if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
@@ -869,6 +925,65 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = peg_0;
}
else {
+ GGML_ABORT("fatal error");
+ }
+ }
+ // minicpmv projector
+ else if (ctx->has_minicpmv_projector)
+ {
+ if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
+ struct ggml_tensor * q = model.mm_model_query;
+ { // layernorm
+ q = ggml_norm(ctx0, q, eps);
+ q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
+ }
+ struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
+ { // layernorm
+ v = ggml_norm(ctx0, v, eps);
+ v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
+ }
+ struct ggml_tensor * k;
+ { // position
+ // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
+ k = ggml_add(ctx0, v, pos_embed);
+ }
+
+ { // attention
+ const int hidden_size = 4096;
+ const int d_head = 128;
+ const int n_head = hidden_size/d_head;
+ const int num_query = 96;
+
+ struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
+ Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
+ struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
+ struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
+ // permute
+ Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
+ Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
+ Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
+ K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
+ K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
+ K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
+ V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
+ V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
+ V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ KQ = ggml_soft_max_inplace(ctx0, KQ);
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
+ KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
+ KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
+
+ embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
+ }
+ { // layernorm
+ embeddings = ggml_norm(ctx0, embeddings, eps);
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
+ }
+ embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
+ }
+ else {
GGML_ASSERT(false);
}
}
@@ -1029,7 +1144,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
}
- GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
+ idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
+ if (idx != -1) {
+ new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
+ }
+
+ // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
+
GGML_ASSERT(new_clip->has_vision_encoder);
GGML_ASSERT(!new_clip->has_text_encoder);
@@ -1040,6 +1161,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
+ LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
@@ -1281,6 +1403,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
}
+ else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
+ // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
+ vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
+ vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
+ vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
+ vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
+ vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
+ vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
+ vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
+ vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
+ vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
+ vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
+ vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
+ vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
+ vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
+ vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
+ vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
+ vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
+ vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
+ vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
+ }
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
@@ -1319,7 +1462,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
clip_image_f32_batch batch;
batch.size = 1;
- ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
+ ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
@@ -1328,6 +1471,17 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return new_clip;
}
+void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
+ ctx_clip->load_image_size = load_image_size;
+}
+
+struct clip_image_size * clip_image_size_init() {
+ struct clip_image_size * load_image_size = new struct clip_image_size();
+ load_image_size->width = 448;
+ load_image_size->height = 448;
+ return load_image_size;
+}
+
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
@@ -1598,9 +1752,184 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
return patches;
}
+static int ensure_divide(int length, int patch_size) {
+ return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
+}
+
+static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
+ int width = original_size.first;
+ int height = original_size.second;
+ if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
+ float r = static_cast<float>(width) / height;
+ height = static_cast<int>(scale_resolution / std::sqrt(r));
+ width = static_cast<int>(height * r);
+ }
+ int best_width = ensure_divide(width, patch_size);
+ int best_height = ensure_divide(height, patch_size);
+ return std::make_pair(best_width, best_height);
+}
+
+static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
+ int width, height;
+ std::tie(width, height) = original_size;
+ int grid_x, grid_y;
+ std::tie(grid_x, grid_y) = grid;
+
+ int refine_width = ensure_divide(width, grid_x);
+ int refine_height = ensure_divide(height, grid_y);
+
+ int grid_width = refine_width / grid_x;
+ int grid_height = refine_height / grid_y;
+
+ // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
+ auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
+ int best_grid_width, best_grid_height;
+ std::tie(best_grid_width, best_grid_height) = best_grid_size;
+
+ // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
+ std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
+ return refine_size;
+}
+
+inline int clip(int x, int lower, int upper) {
+ return std::max(lower, std::min(x, upper));
+}
+
+static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
+ std::vector<int> candidate_split_grids_nums;
+ for (int i : {multiple - 1, multiple, multiple + 1}) {
+ if (i == 1 || i > max_slice_nums) {
+ continue;
+ }
+ candidate_split_grids_nums.push_back(i);
+ }
+
+ std::vector<std::pair<int, int>> candidate_grids;
+ for (int split_grids_nums : candidate_split_grids_nums) {
+ int m = 1;
+ while (m <= split_grids_nums) {
+ if (split_grids_nums % m == 0) {
+ candidate_grids.emplace_back(m, split_grids_nums / m);
+ }
+ ++m;
+ }
+ }
+
+ std::pair<int, int> best_grid{1, 1};
+ float min_error = std::numeric_limits<float>::infinity();
+ for (const auto& grid : candidate_grids) {
+ float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
+ if (error < min_error) {
+ best_grid = grid;
+ min_error = error;
+ }
+ }
+ return best_grid;
+}
+
+// inspired from LLaVA-UHD:
+// -> https://arxiv.org/pdf/2403.11703
+// -> https://github.com/thunlp/LLaVA-UHD
+// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
+static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
+ const std::pair<int, int> original_size={img->nx,img->ny};
+ const int original_width = img->nx;
+ const int original_height = img->ny;
+ const float log_ratio = log(1.0*original_width/original_height);
+ const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
+ const int multiple = fmin(ceil(ratio), max_slice_nums);
+
+ std::vector<std::vector<clip_image_u8 *>> images;
+ LOG_TEE("%s: multiple %d\n", __func__, multiple);
+ images.push_back(std::vector<clip_image_u8 *>());
+
+ if (multiple <= 1) {
+ auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
+ clip_image_u8 * source_image = clip_image_u8_init();
+ bicubic_resize(*img, *source_image, best_size.first, best_size.second);
+ // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
+ images[images.size()-1].push_back(source_image);
+ }
+ else if (multiple > 1) {
+ auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
+ clip_image_u8 * source_image = clip_image_u8_init();
+ bicubic_resize(*img, *source_image, best_size.first, best_size.second);
+ // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
+ LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
+ images[images.size()-1].push_back(source_image);
+
+ std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
+ LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
+
+ auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
+ clip_image_u8 * refine_image = clip_image_u8_init();
+ bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
+
+ LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
+
+ // split_to_patches
+ int width = refine_image->nx;
+ int height = refine_image->ny;
+ int grid_x = int(width / best_grid.first);
+ int grid_y = int(height / best_grid.second);
+ for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
+ images.push_back(std::vector<clip_image_u8 *>());
+ for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
+ clip_image_u8 * patch = clip_image_u8_init();
+ patch->nx = grid_x;
+ patch->ny = grid_y;
+ patch->buf.resize(3 * patch->nx * patch->ny);
+ for (int y = patches_i; y < patches_i + grid_y; ++y) {
+ for (int x = patches_j; x < patches_j + grid_x; ++x) {
+ const int i = 3 * (y * refine_image->nx + x);
+ const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
+ patch->buf[j] = refine_image->buf[i];
+ patch->buf[j+1] = refine_image->buf[i+1];
+ patch->buf[j+2] = refine_image->buf[i+2];
+ }
+ }
+ images[images.size()-1].push_back(patch);
+ }
+ }
+ }
+ return images;
+}
+
+int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
+ const int max_slice_nums=9;
+ const int scale_resolution=448;
+ const int original_width = ctx_clip->load_image_size->width;
+ const int original_height = ctx_clip->load_image_size->height;
+ const float log_ratio = log(1.0*original_width/original_height);
+ const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
+ const int multiple = fmin(ceil(ratio), max_slice_nums);
+ std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
+ return best_grid.first;
+}
+
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
+ if (clip_is_minicpmv(ctx)) {
+ std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
+ res_imgs->size = 0;
+ for (size_t i = 0; i < imgs.size(); ++i) {
+ res_imgs->size += imgs[i].size();
+ }
+ res_imgs->data = new clip_image_f32[res_imgs->size];
+ int idx = 0;
+ for (size_t i = 0; i < imgs.size(); ++i) {
+ for (size_t j = 0; j < imgs[i].size(); ++j) {
+ LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
+ clip_image_f32 * res = clip_image_f32_init();
+ normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
+ res_imgs->data[idx++] = *res;
+ clip_image_f32_free(res);
+ }
+ }
+ return true;
+ }
+
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
@@ -1816,11 +2145,99 @@ int clip_n_patches(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
n_patches /= 4;
+ } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
+ n_patches = 96;
}
return n_patches;
}
+static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
+ assert(embed_dim % 2 == 0);
+ int H = pos.size();
+ int W = pos[0].size();
+
+ std::vector<float> omega(embed_dim / 2);
+ for (int i = 0; i < embed_dim / 2; ++i) {
+ omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
+ }
+
+ std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
+ for (int h = 0; h < H; ++h) {
+ for (int w = 0; w < W; ++w) {
+ for (int d = 0; d < embed_dim / 2; ++d) {
+ float out_value = pos[h][w] * omega[d];
+ emb[h][w][d] = sin(out_value);
+ emb[h][w][d + embed_dim / 2] = cos(out_value);
+ }
+ }
+ }
+
+ return emb;
+}
+
+static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
+ assert(embed_dim % 2 == 0);
+ std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
+ std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
+
+ int H = emb_h.size();
+ int W = emb_h[0].size();
+ std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
+
+ for (int h = 0; h < H; ++h) {
+ for (int w = 0; w < W; ++w) {
+ for (int d = 0; d < embed_dim / 2; ++d) {
+ emb[h][w][d] = emb_h[h][w][d];
+ emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
+ }
+ }
+ }
+ return emb;
+}
+
+static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
+ int grid_h_size = image_size.first;
+ int grid_w_size = image_size.second;
+
+ std::vector<float> grid_h(grid_h_size);
+ std::vector<float> grid_w(grid_w_size);
+
+ for (int i = 0; i < grid_h_size; ++i) {
+ grid_h[i] = static_cast<float>(i);
+ }
+ for (int i = 0; i < grid_w_size; ++i) {
+ grid_w[i] = static_cast<float>(i);
+ }
+
+ std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
+ for (int h = 0; h < grid_h_size; ++h) {
+ for (int w = 0; w < grid_w_size; ++w) {
+ grid[h][w] = grid_w[w];
+ }
+ }
+ std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
+ for (int h = 0; h < grid_h_size; ++h) {
+ for (int w = 0; w < grid_w_size; ++w) {
+ grid_2d[0][h][w] = grid_h[h];
+ grid_2d[1][h][w] = grid_w[w];
+ }
+ }
+
+ std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
+
+ int H = image_size.first;
+ int W = image_size.second;
+ std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
+ for (int h = 0; h < H; ++h) {
+ for (int w = 0; w < W; ++w) {
+ pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
+ }
+ }
+
+ return pos_embed_2d;
+}
+
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
@@ -1843,18 +2260,27 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
if (ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
}
+ if (ctx->has_minicpmv_projector) {
+ GGML_ASSERT(batch_size == 1);
+ }
// build the inference graph
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
+ ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
+ const int image_size = hparams.image_size;
+ int image_size_width = image_size;
+ int image_size_height = image_size;
+ if (ctx->has_minicpmv_projector) {
+ image_size_width = imgs->data[0].nx;
+ image_size_height = imgs->data[0].ny;
+ }
const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
+ const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
{
@@ -1864,7 +2290,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
- GGML_ASSERT(nx == image_size && ny == image_size);
+ if (!ctx->has_minicpmv_projector) {
+ GGML_ASSERT(nx == image_size && ny == image_size);
+ }
const int n = nx * ny;
@@ -1881,37 +2309,75 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
+ if (ctx->has_minicpmv_projector) {
+ {
+ // inspired from siglip:
+ // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
+ // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
+ struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
+ int* positions_data = (int*)malloc(ggml_nbytes(positions));
+ for (int i = 0; i < num_positions; i++) {
+ positions_data[i] = std::floor(70.0*i/num_positions);
+ }
+ ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
+ free(positions_data);
+ }
- {
- if (ctx->has_class_embedding) {
- struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
+ {
+ // inspired from resampler of Qwen-VL:
+ // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
+ // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
+ struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
+ if(ctx->load_image_size==nullptr){
+ ctx->load_image_size= clip_image_size_init();
+ }
+ int pos_w = ctx->load_image_size->width/patch_size;
+ int pos_h = ctx->load_image_size->height/patch_size;
+ int embed_dim = 4096;
+ auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
+
+ float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
+ for(int i=0;i<pos_w * pos_h;++i){
+ for(int j=0;j<embed_dim;++j){
+ pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
+ }
+ }
- void* zero_mem = malloc(ggml_nbytes(embeddings));
- memset(zero_mem, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
- free(zero_mem);
+ ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
+ free(pos_embed_data);
}
- }
+ } else {
+ {
+ if (ctx->has_class_embedding) {
+ struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
- {
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
+ void* zero_mem = malloc(ggml_nbytes(embeddings));
+ memset(zero_mem, 0, ggml_nbytes(embeddings));
+ ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
+ free(zero_mem);
+ }
+ }
+
+ {
+ struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
+ int* positions_data = (int*)malloc(ggml_nbytes(positions));
+ for (int i = 0; i < num_positions; i++) {
+ positions_data[i] = i;
+ }
+ ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
+ free(positions_data);
}
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- {
- struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
- int* patches_data = (int*)malloc(ggml_nbytes(patches));
- for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
+ {
+ struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
+ int* patches_data = (int*)malloc(ggml_nbytes(patches));
+ for (int i = 0; i < num_patches; i++) {
+ patches_data[i] = i + 1;
+ }
+ ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
+ free(patches_data);
}
- ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
- free(patches_data);
}
if (ggml_backend_is_cpu(ctx->backend)) {
@@ -2081,7 +2547,14 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0];
}
+ if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
+ return 4096;
+ }
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}
+
+bool clip_is_minicpmv(const struct clip_ctx * ctx) {
+ return ctx->has_minicpmv_projector;
+}