summaryrefslogtreecommitdiff
path: root/examples/llava/convert-image-encoder-to-gguf.py
diff options
context:
space:
mode:
authorJohn <78893154+cmp-nct@users.noreply.github.com>2023-11-30 23:11:14 +0100
committerGitHub <noreply@github.com>2023-11-30 23:11:14 +0100
commit33c9892af58b7b161f2a532935dcccff8c8048c6 (patch)
treebbf758b597a28645db936641a32d30210924da01 /examples/llava/convert-image-encoder-to-gguf.py
parent8efa0f6ebed53c9453e6721da86fb294e5015909 (diff)
llava : ShareGPT4V compatibility (vision encoder only loading) (#4172)
* ShareGPT4 compatibility (vision encoder only loading) Load only a CLIP vision encoder (as supplied by ShareGPT finetunes) Corrects the argument parsing for --img_mean and --img_std (which were previously not parsed but attempted to access) Defines defaults for img_mean and img_std which are equal to the llava 1.5 CLIP encoder, so you do not have to provide them * Update convert-image-encoder-to-gguf.py
Diffstat (limited to 'examples/llava/convert-image-encoder-to-gguf.py')
-rw-r--r--examples/llava/convert-image-encoder-to-gguf.py52
1 files changed, 37 insertions, 15 deletions
diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py
index 2f5eef19..729aaef8 100644
--- a/examples/llava/convert-image-encoder-to-gguf.py
+++ b/examples/llava/convert-image-encoder-to-gguf.py
@@ -5,7 +5,7 @@ import json
import torch
import numpy as np
from gguf import *
-from transformers import CLIPModel, CLIPProcessor
+from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
@@ -78,11 +78,19 @@ ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
+ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
+ help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
+# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
+default_image_mean = [0.48145466, 0.4578275, 0.40821073]
+default_image_std = [0.26862954, 0.26130258, 0.27577711]
+ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
+ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
+# with proper
args = ap.parse_args()
@@ -96,15 +104,22 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
-
-with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- vocab = json.load(f)
- tokens = [key for key in vocab]
+if args.clip_model_is_vision:
+ vocab = None
+ tokens = None
+else:
+ with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
+ vocab = json.load(f)
+ tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
- v_hparams = config["vision_config"]
- t_hparams = config["text_config"]
+ if args.clip_model_is_vision:
+ v_hparams = config
+ t_hparams = None
+ else:
+ v_hparams = config["vision_config"]
+ t_hparams = config["text_config"]
# possible data types
# ftype == 0 -> float32
@@ -117,9 +132,12 @@ ftype = 1
if args.use_f32:
ftype = 0
-
-model = CLIPModel.from_pretrained(dir_model)
-processor = CLIPProcessor.from_pretrained(dir_model)
+if args.clip_model_is_vision:
+ model = CLIPVisionModel.from_pretrained(dir_model)
+ processor = None
+else:
+ model = CLIPModel.from_pretrained(dir_model)
+ processor = CLIPProcessor.from_pretrained(dir_model)
fname_middle = None
has_text_encoder = True
@@ -128,13 +146,13 @@ has_llava_projector = False
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
-elif args.vision_only:
- fname_middle = "vision-"
- has_text_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
+elif args.vision_only:
+ fname_middle = "vision-"
+ has_text_encoder = False
else:
fname_middle = ""
@@ -182,8 +200,12 @@ if has_vision_encoder:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
- image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
- image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
+ if processor is not None:
+ image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
+ image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
+ else:
+ image_mean = args.image_mean if args.image_mean is not None else default_image_mean
+ image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)