diff options
author | Richard Kiss <him@richardkiss.com> | 2023-12-12 01:53:36 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-12-12 11:53:36 +0200 |
commit | 9494d7c4774ab745490b5a19570ff7747a194143 (patch) | |
tree | ec70be73a544a7cf30a17a0430b87d89a269d188 /examples/llava/convert-image-encoder-to-gguf.py | |
parent | 6138963fb232cbae70c9d181db0ba125708f473d (diff) |
english : use `typos` to fix comments and logs (#4354)
Diffstat (limited to 'examples/llava/convert-image-encoder-to-gguf.py')
-rw-r--r-- | examples/llava/convert-image-encoder-to-gguf.py | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py index 729aaef8..03688e0e 100644 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ b/examples/llava/convert-image-encoder-to-gguf.py @@ -51,7 +51,7 @@ def bytes_to_unicode(): The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a signficant percentage of your normal, say, 32K bpe vocab. + This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ |