summaryrefslogtreecommitdiff
path: root/examples/llava/llava-cli.cpp
diff options
context:
space:
mode:
authorDamian Stewart <d@damianstewart.com>2023-11-06 22:36:23 +0100
committerGitHub <noreply@github.com>2023-11-07 00:36:23 +0300
commit381efbf480959bb6d1e247a8b0c2328f22e350f8 (patch)
treee6ad3f01c2b681b5af7300d0d5c8650fbfe1eeaa /examples/llava/llava-cli.cpp
parent2833a6f63c1b87c7f4ac574bcf7a15a2f3bf3ede (diff)
llava : expose as a shared library for downstream projects (#3613)
* wip llava python bindings compatibility * add external llava API * add base64 in-prompt image support * wip refactor image loading * refactor image load out of llava init * cleanup * further cleanup; move llava-cli into its own file and rename * move base64.hpp into common/ * collapse clip and llava libraries * move llava into its own subdir * wip * fix bug where base64 string was not removed from the prompt * get libllava to output in the right place * expose llava methods in libllama.dylib * cleanup memory usage around clip_image_* * cleanup and refactor *again* * update headerdoc * build with cmake, not tested (WIP) * Editorconfig * Editorconfig * Build with make * Build with make * Fix cyclical depts on Windows * attempt to fix build on Windows * attempt to fix build on Windows * Upd TODOs * attempt to fix build on Windows+CUDA * Revert changes in cmake * Fix according to review comments * Support building as a shared library * address review comments --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Diffstat (limited to 'examples/llava/llava-cli.cpp')
-rw-r--r--examples/llava/llava-cli.cpp315
1 files changed, 315 insertions, 0 deletions
diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp
new file mode 100644
index 00000000..19374c67
--- /dev/null
+++ b/examples/llava/llava-cli.cpp
@@ -0,0 +1,315 @@
+#include "ggml.h"
+#include "common.h"
+#include "clip.h"
+#include "llava.h"
+#include "llama.h"
+
+#include "base64.hpp"
+
+#include <cstdio>
+#include <cstdlib>
+#include <vector>
+
+static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
+ int N = (int) tokens.size();
+ for (int i = 0; i < N; i += n_batch) {
+ int n_eval = (int) tokens.size() - i;
+ if (n_eval > n_batch) {
+ n_eval = n_batch;
+ }
+ if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
+ fprintf(stderr, "%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
+ return false;
+ }
+ *n_past += n_eval;
+ }
+ return true;
+}
+
+static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
+ std::vector<llama_token> tokens;
+ tokens.push_back(id);
+ return eval_tokens(ctx_llama, tokens, 1, n_past);
+}
+
+static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
+ std::string str2 = str;
+ std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
+ eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
+ return true;
+}
+
+// TODO: use common/sampling.h
+static llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
+ auto & sparams = params.sparams;
+
+ // out of user input, sample next token
+ const float temp = sparams.temp;
+ const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
+ const float top_p = sparams.top_p;
+ const float tfs_z = sparams.tfs_z;
+ const float typical_p = sparams.typical_p;
+ // const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
+ // const float repeat_penalty = sparams.repeat_penalty;
+ // const float alpha_presence = sparams.presence_penalty;
+ // const float alpha_frequency = sparams.frequency_penalty;
+ const int mirostat = sparams.mirostat;
+ const float mirostat_tau = sparams.mirostat_tau;
+ const float mirostat_eta = sparams.mirostat_eta;
+ // const bool penalize_nl = sparams.penalize_nl;
+
+ llama_token id = 0;
+ {
+ auto logits = llama_get_logits(ctx_llama);
+ auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
+
+ // Apply params.logit_bias map
+ for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
+ logits[it->first] += it->second;
+ }
+
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+
+ if (temp <= 0) {
+ // Greedy sampling
+ id = llama_sample_token_greedy(ctx_llama, &candidates_p);
+ } else {
+ if (mirostat == 1) {
+ static float mirostat_mu = 2.0f * mirostat_tau;
+ const int mirostat_m = 100;
+ llama_sample_temp(ctx_llama, &candidates_p, temp);
+ id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
+ } else if (mirostat == 2) {
+ static float mirostat_mu = 2.0f * mirostat_tau;
+ llama_sample_temp(ctx_llama, &candidates_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
+ } else {
+ // Temperature sampling
+ llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
+ llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
+ llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
+ llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
+ llama_sample_temp(ctx_llama, &candidates_p, temp);
+ id = llama_sample_token(ctx_llama, &candidates_p);
+ }
+ }
+ }
+
+ return id;
+}
+
+static const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
+ int id = sample_id(ctx_llama, params);
+ static std::string ret;
+ if (id == llama_token_eos(llama_get_model(ctx_llama))) {
+ ret = "</s>";
+ } else {
+ ret = llama_token_to_piece(ctx_llama, id);
+ }
+ eval_id(ctx_llama, id, n_past);
+ return ret.c_str();
+}
+
+static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
+static const char* IMG_BASE64_TAG_END = "\">";
+
+static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
+ begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
+ end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
+}
+
+static bool prompt_contains_image(const std::string& prompt) {
+ size_t begin, end;
+ find_image_tag_in_prompt(prompt, begin, end);
+ return (begin != std::string::npos);
+}
+
+// replaces the base64 image tag in the prompt with `replacement`
+static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
+ size_t img_base64_str_start, img_base64_str_end;
+ find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
+ if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
+ fprintf(stderr, "%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
+ return NULL;
+ }
+
+ auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
+ auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
+ auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
+
+ auto required_bytes = base64::required_encode_size(base64_str.size());
+ auto img_bytes = std::vector<unsigned char>(required_bytes);
+ base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
+
+ auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
+ if (!embed) {
+ fprintf(stderr, "%s: could not load image from base64 string.\n", __func__);
+ return NULL;
+ }
+
+ return embed;
+}
+
+static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
+ size_t begin, end;
+ find_image_tag_in_prompt(prompt, begin, end);
+ if (begin == std::string::npos || end == std::string::npos) {
+ return prompt;
+ }
+ auto pre = prompt.substr(0, begin);
+ auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
+ return pre + replacement + post;
+}
+
+struct llava_context {
+ struct clip_ctx * ctx_clip = NULL;
+ struct llama_context * ctx_llama = NULL;
+ struct llama_model * model = NULL;
+};
+
+static void show_additional_info(int /*argc*/, char ** argv) {
+ printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
+ printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
+}
+
+static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
+
+ // load and preprocess the image
+ llava_image_embed * embed = NULL;
+ auto prompt = params->prompt;
+ if (prompt_contains_image(prompt)) {
+ if (!params->image.empty()) {
+ printf("using base64 encoded image instead of command line image path\n");
+ }
+ embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
+ if (!embed) {
+ fprintf(stderr, "%s: can't load image from prompt\n", __func__);
+ return NULL;
+ }
+ params->prompt = remove_image_from_prompt(prompt);
+ } else {
+ embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
+ if (!embed) {
+ fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
+ return NULL;
+ }
+ }
+
+ return embed;
+}
+
+static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
+ int n_past = 0;
+
+ const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
+
+ // llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
+ eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, true);
+ llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
+ eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);
+
+ // generate the response
+
+ printf("\n");
+
+ for (int i = 0; i < max_tgt_len; i++) {
+ const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
+ if (strcmp(tmp, "</s>") == 0) break;
+
+ printf("%s", tmp);
+ fflush(stdout);
+ }
+
+ printf("\n");
+}
+
+
+static struct llava_context * llava_init(gpt_params * params) {
+ const char * clip_path = params->mmproj.c_str();
+
+ auto prompt = params->prompt;
+ if (prompt.empty()) {
+ prompt = "describe the image in detail.";
+ }
+
+ auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
+
+ llama_backend_init(params->numa);
+
+ llama_model_params model_params = llama_model_default_params();
+ llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
+ if (model == NULL) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+ return NULL;
+ }
+
+ llama_context_params ctx_params = llama_context_default_params();
+
+ ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
+ ctx_params.n_threads = params->n_threads;
+ ctx_params.n_threads_batch = params->n_threads_batch == -1 ? params->n_threads : params->n_threads_batch;
+
+ llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
+
+ if (ctx_llama == NULL) {
+ fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+ return NULL;
+ }
+
+ auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
+
+ ctx_llava->ctx_llama = ctx_llama;
+ ctx_llava->ctx_clip = ctx_clip;
+ ctx_llava->model = model;
+ return ctx_llava;
+}
+
+static void llava_free(struct llava_context * ctx_llava) {
+ if (ctx_llava->ctx_clip) {
+ clip_free(ctx_llava->ctx_clip);
+ ctx_llava->ctx_clip = NULL;
+ }
+
+ llama_free(ctx_llava->ctx_llama);
+ llama_free_model(ctx_llava->model);
+ llama_backend_free();
+}
+
+int main(int argc, char ** argv) {
+ ggml_time_init();
+
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ show_additional_info(argc, argv);
+ return 1;
+ }
+ if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
+ gpt_print_usage(argc, argv, params);
+ show_additional_info(argc, argv);
+ return 1;
+ }
+
+ auto ctx_llava = llava_init(&params);
+ if (ctx_llava == NULL) {
+ fprintf(stderr, "%s: error: failed to init llava\n", __func__);
+ return 1;
+ }
+
+ auto image_embed = load_image(ctx_llava, &params);
+
+ // process the prompt
+ process_prompt(ctx_llava, image_embed, &params, params.prompt);
+
+ llama_print_timings(ctx_llava->ctx_llama);
+
+ llava_image_embed_free(image_embed);
+ llava_free(ctx_llava);
+ return 0;
+}