diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /examples/llava/llava_surgery.py | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/llava/llava_surgery.py')
-rw-r--r-- | examples/llava/llava_surgery.py | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/examples/llava/llava_surgery.py b/examples/llava/llava_surgery.py new file mode 100644 index 00000000..4f2da3be --- /dev/null +++ b/examples/llava/llava_surgery.py @@ -0,0 +1,38 @@ +import argparse +import glob +import os +import torch + + +ap = argparse.ArgumentParser() +ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model") +args = ap.parse_args() + +# find the model part that includes the the multimodal projector weights +path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1] +checkpoint = torch.load(path) + +# get a list of mm tensor names +mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")] + +# store these tensors in a new dictionary and torch.save them +projector = {name: checkpoint[name].float() for name in mm_tensors} +torch.save(projector, f"{args.model}/llava.projector") + +# BakLLaVA models contain CLIP tensors in it +clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")] +if len(clip_tensors) > 0: + clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors} + torch.save(clip, f"{args.model}/llava.clip") + + + # added tokens should be removed to be able to convert Mistral models + if os.path.exists(f"{args.model}/added_tokens.json"): + with open(f"{args.model}/added_tokens.json", "w") as f: + f.write("{}\n") + + + +print("Done!") +print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") +print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.") |