summaryrefslogtreecommitdiff
path: root/examples/llava/minicpmv-convert-image-encoder-to-gguf.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-12 15:14:32 +0200
committerGitHub <noreply@github.com>2024-08-12 15:14:32 +0200
commit8f43e551038af2547b5c01d0e9edd641c0e4bd29 (patch)
tree07a4373620a9381d0b5c7189a475990a6feb48a5 /examples/llava/minicpmv-convert-image-encoder-to-gguf.py
parentf5d1af61d79fb53ccfbac2e665e43208c07b083d (diff)
Merge mainline - Aug 12 2024 (#17)
* Merge mainline * Fix after merge * Remove CI check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/llava/minicpmv-convert-image-encoder-to-gguf.py')
-rw-r--r--examples/llava/minicpmv-convert-image-encoder-to-gguf.py382
1 files changed, 382 insertions, 0 deletions
diff --git a/examples/llava/minicpmv-convert-image-encoder-to-gguf.py b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py
new file mode 100644
index 00000000..12cdd128
--- /dev/null
+++ b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py
@@ -0,0 +1,382 @@
+import argparse
+import os
+import json
+import re
+
+import torch
+import numpy as np
+from gguf import *
+from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
+
+TEXT = "clip.text"
+VISION = "clip.vision"
+
+
+def add_key_str(raw_key: str, arch: str) -> str:
+ return raw_key.format(arch=arch)
+
+
+def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
+ if name in (
+ "logit_scale",
+ "text_model.embeddings.position_ids",
+ "vision_model.embeddings.position_ids",
+ ):
+ return True
+
+ if has_minicpmv and name in ["visual_projection.weight"]:
+ return True
+
+ if name.startswith("v") and not has_vision:
+ return True
+
+ if name.startswith("t") and not has_text:
+ return True
+
+ return False
+
+
+def get_tensor_name(name: str) -> str:
+ if "projection" in name:
+ return name
+ if "mm_projector" in name:
+ name = name.replace("model.mm_projector", "mm")
+ name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
+ name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
+ return name
+
+ return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
+
+
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
+ The reversible bpe codes work on unicode strings.
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+ This is a significant percentage of your normal, say, 32K bpe vocab.
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1))
+ + list(range(ord("¡"), ord("¬") + 1))
+ + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+ap = argparse.ArgumentParser()
+ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
+ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
+ap.add_argument("--text-only", action="store_true", required=False,
+ help="Save a text-only model. It can't be used to encode images")
+ap.add_argument("--vision-only", action="store_true", required=False,
+ help="Save a vision-only model. It can't be used to encode texts")
+ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
+ help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
+ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
+ help="The clip model is from openclip (for ViT-SO400M type))")
+ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
+ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
+ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
+# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
+# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
+default_image_mean = [0.48145466, 0.4578275, 0.40821073]
+default_image_std = [0.26862954, 0.26130258, 0.27577711]
+ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
+ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
+
+# with proper
+args = ap.parse_args()
+
+
+if args.text_only and args.vision_only:
+ print("--text-only and --image-only arguments cannot be specified at the same time.")
+ exit(1)
+
+if args.use_f32:
+ print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
+
+# output in the same directory as the model if output_dir is None
+dir_model = args.model_dir
+
+if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
+ vocab = None
+ tokens = None
+else:
+ with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
+ vocab = json.load(f)
+ tokens = [key for key in vocab]
+
+# possible data types
+# ftype == 0 -> float32
+# ftype == 1 -> float16
+#
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+ftype = 1
+if args.use_f32:
+ ftype = 0
+
+# if args.clip_model_is_vision or args.clip_model_is_openclip:
+# model = CLIPVisionModel.from_pretrained(dir_model)
+# processor = None
+# else:
+# model = CLIPModel.from_pretrained(dir_model)
+# processor = CLIPProcessor.from_pretrained(dir_model)
+
+default_vision_config = {
+ "hidden_size": 1152,
+ "image_size": 980,
+ "intermediate_size": 4304,
+ "model_type": "idefics2",
+ "num_attention_heads": 16,
+ "num_hidden_layers": 27,
+ "patch_size": 14,
+ }
+vision_config = Idefics2VisionConfig(**default_vision_config)
+model = Idefics2VisionTransformer(vision_config)
+
+processor = None
+# if model.attn_pool is not None:
+# model.attn_pool = torch.nn.Identity()
+
+# model.blocks = model.blocks[:-1]
+model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
+
+fname_middle = None
+has_text_encoder = True
+has_vision_encoder = True
+has_minicpmv_projector = False
+if args.text_only:
+ fname_middle = "text-"
+ has_vision_encoder = False
+elif args.minicpmv_projector is not None:
+ fname_middle = "mmproj-"
+ has_text_encoder = False
+ has_minicpmv_projector = True
+elif args.vision_only:
+ fname_middle = "vision-"
+ has_text_encoder = False
+else:
+ fname_middle = ""
+
+output_dir = args.output_dir if args.output_dir is not None else dir_model
+os.makedirs(output_dir, exist_ok=True)
+output_prefix = os.path.basename(output_dir).replace("ggml_", "")
+fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
+fout = GGUFWriter(path=fname_out, arch="clip")
+
+fout.add_bool("clip.has_text_encoder", has_text_encoder)
+fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
+fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
+fout.add_file_type(ftype)
+if args.text_only:
+ fout.add_description("text-only CLIP model")
+elif args.vision_only and not has_minicpmv_projector:
+ fout.add_description("vision-only CLIP model")
+elif has_minicpmv_projector:
+ fout.add_description("image encoder for MiniCPM-V")
+ # add projector type
+ fout.add_string("clip.projector_type", "resampler")
+else:
+ fout.add_description("two-tower CLIP model")
+
+if has_vision_encoder:
+ # vision_model hparams
+ fout.add_uint32("clip.vision.image_size", 448)
+ fout.add_uint32("clip.vision.patch_size", 14)
+ fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
+ fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
+ fout.add_uint32("clip.vision.projection_dim", 0)
+ fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
+ fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
+ block_count = 26
+ fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
+
+ if processor is not None:
+ image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
+ image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
+ else:
+ image_mean = args.image_mean if args.image_mean is not None else default_image_mean
+ image_std = args.image_std if args.image_std is not None else default_image_std
+ fout.add_array("clip.vision.image_mean", image_mean)
+ fout.add_array("clip.vision.image_std", image_std)
+
+use_gelu = True
+fout.add_bool("clip.use_gelu", use_gelu)
+
+def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
+ """
+ embed_dim: output dimension for each position
+ pos: a list of positions to be encoded: size (M,)
+ out: (M, D)
+ """
+ assert embed_dim % 2 == 0
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
+ omega /= embed_dim / 2.
+ omega = 1. / 10000 ** omega # (D/2,)
+
+ pos = pos.reshape(-1) # (M,)
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
+
+ emb_sin = np.sin(out) # (M, D/2)
+ emb_cos = np.cos(out) # (M, D/2)
+
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
+ return emb
+
+def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
+ assert embed_dim % 2 == 0
+
+ # use half of dimensions to encode grid_h
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
+
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
+ return emb
+
+
+# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
+def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
+ """
+ grid_size: int of the grid height and width
+ return:
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
+ """
+ if isinstance(grid_size, int):
+ grid_h_size, grid_w_size = grid_size, grid_size
+ else:
+ grid_h_size, grid_w_size = grid_size[0], grid_size[1]
+
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
+ grid = np.stack(grid, axis=0)
+
+ grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
+ if cls_token:
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
+ return pos_embed
+
+def _replace_name_resampler(s, v):
+ if re.match("resampler.pos_embed", s):
+ return {
+ s: v,
+ re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
+ }
+ if re.match("resampler.proj", s):
+ return {
+ re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
+ re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
+ }
+ if re.match("resampler.attn.in_proj_.*", s):
+ return {
+ re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
+ re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
+ re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
+ }
+ return {s: v}
+
+if has_minicpmv_projector:
+ projector = torch.load(args.minicpmv_projector)
+ new_state_dict = {}
+ for k, v in projector.items():
+ kvs = _replace_name_resampler(k, v)
+ for nk, nv in kvs.items():
+ new_state_dict[nk] = nv
+ projector = new_state_dict
+ ftype_cur = 0
+ for name, data in projector.items():
+ name = get_tensor_name(name)
+ data = data.squeeze().numpy()
+
+ n_dims = len(data.shape)
+ if ftype == 1:
+ if name[-7:] == ".weight" and n_dims == 2:
+ print(" Converting to float16")
+ data = data.astype(np.float16)
+ ftype_cur = 1
+ else:
+ print(" Converting to float32")
+ data = data.astype(np.float32)
+ ftype_cur = 0
+ else:
+ if data.dtype != np.float32:
+ print(" Converting to float32")
+ data = data.astype(np.float32)
+ ftype_cur = 0
+
+ fout.add_tensor(name, data)
+ print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
+
+ print("Projector tensors added\n")
+
+def _replace_name(s, v):
+ s = "vision_model." + s
+ if re.match("vision_model.embeddings.position_embedding", s):
+ v = v.unsqueeze(0)
+ return {s: v}
+
+ return {s: v}
+
+state_dict = model.state_dict()
+new_state_dict = {}
+for k, v in state_dict.items():
+ kvs = _replace_name(k, v)
+ for nk, nv in kvs.items():
+ new_state_dict[nk] = nv
+state_dict = new_state_dict
+for name, data in state_dict.items():
+ if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
+ # we don't need this
+ print(f"skipping parameter: {name}")
+ continue
+
+ name = get_tensor_name(name)
+ data = data.squeeze().numpy()
+
+ n_dims = len(data.shape)
+
+ # ftype == 0 -> float32, ftype == 1 -> float16
+ ftype_cur = 0
+ if n_dims == 4:
+ print(f"tensor {name} is always saved in f16")
+ data = data.astype(np.float16)
+ ftype_cur = 1
+ elif ftype == 1:
+ if name[-7:] == ".weight" and n_dims == 2:
+ print(" Converting to float16")
+ data = data.astype(np.float16)
+ ftype_cur = 1
+ else:
+ print(" Converting to float32")
+ data = data.astype(np.float32)
+ ftype_cur = 0
+ else:
+ if data.dtype != np.float32:
+ print(" Converting to float32")
+ data = data.astype(np.float32)
+ ftype_cur = 0
+
+ print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
+ fout.add_tensor(name, data)
+
+
+fout.write_header_to_file()
+fout.write_kv_data_to_file()
+fout.write_tensors_to_file()
+fout.close()
+
+print("Done. Output file: " + fname_out)