diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-08-12 15:14:32 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-08-12 15:14:32 +0200 |
commit | 8f43e551038af2547b5c01d0e9edd641c0e4bd29 (patch) | |
tree | 07a4373620a9381d0b5c7189a475990a6feb48a5 /examples/llava/minicpmv-surgery.py | |
parent | f5d1af61d79fb53ccfbac2e665e43208c07b083d (diff) |
Merge mainline - Aug 12 2024 (#17)
* Merge mainline
* Fix after merge
* Remove CI check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/llava/minicpmv-surgery.py')
-rw-r--r-- | examples/llava/minicpmv-surgery.py | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/examples/llava/minicpmv-surgery.py b/examples/llava/minicpmv-surgery.py new file mode 100644 index 00000000..2b6bce7c --- /dev/null +++ b/examples/llava/minicpmv-surgery.py @@ -0,0 +1,47 @@ +import argparse +import os +import torch +from transformers import AutoModel, AutoTokenizer + +ap = argparse.ArgumentParser() +ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model") +args = ap.parse_args() + +# find the model part that includes the the multimodal projector weights +model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True) +checkpoint = model.state_dict() + +# get a list of mm tensor names +mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")] + +# store these tensors in a new dictionary and torch.save them +projector = {name: checkpoint[name].float() for name in mm_tensors} +torch.save(projector, f"{args.model}/minicpmv.projector") + +clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")] +if len(clip_tensors) > 0: + clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors} + torch.save(clip, f"{args.model}/minicpmv.clip") + + # added tokens should be removed to be able to convert Mistral models + if os.path.exists(f"{args.model}/added_tokens.json"): + with open(f"{args.model}/added_tokens.json", "w") as f: + f.write("{}\n") + +config = model.llm.config +config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5" +config.auto_map = { + "AutoConfig": "configuration_minicpm.MiniCPMConfig", + "AutoModel": "modeling_minicpm.MiniCPMModel", + "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", + "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", + "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" +} +model.llm.save_pretrained(f"{args.model}/model") +tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) +tok.save_pretrained(f"{args.model}/model") +# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py") + +print("Done!") +print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") +print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.") |