summaryrefslogtreecommitdiff
path: root/examples/llava/minicpmv-surgery.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-12 15:14:32 +0200
committerGitHub <noreply@github.com>2024-08-12 15:14:32 +0200
commit8f43e551038af2547b5c01d0e9edd641c0e4bd29 (patch)
tree07a4373620a9381d0b5c7189a475990a6feb48a5 /examples/llava/minicpmv-surgery.py
parentf5d1af61d79fb53ccfbac2e665e43208c07b083d (diff)
Merge mainline - Aug 12 2024 (#17)
* Merge mainline * Fix after merge * Remove CI check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'examples/llava/minicpmv-surgery.py')
-rw-r--r--examples/llava/minicpmv-surgery.py47
1 files changed, 47 insertions, 0 deletions
diff --git a/examples/llava/minicpmv-surgery.py b/examples/llava/minicpmv-surgery.py
new file mode 100644
index 00000000..2b6bce7c
--- /dev/null
+++ b/examples/llava/minicpmv-surgery.py
@@ -0,0 +1,47 @@
+import argparse
+import os
+import torch
+from transformers import AutoModel, AutoTokenizer
+
+ap = argparse.ArgumentParser()
+ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model")
+args = ap.parse_args()
+
+# find the model part that includes the the multimodal projector weights
+model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
+checkpoint = model.state_dict()
+
+# get a list of mm tensor names
+mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
+
+# store these tensors in a new dictionary and torch.save them
+projector = {name: checkpoint[name].float() for name in mm_tensors}
+torch.save(projector, f"{args.model}/minicpmv.projector")
+
+clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
+if len(clip_tensors) > 0:
+ clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
+ torch.save(clip, f"{args.model}/minicpmv.clip")
+
+ # added tokens should be removed to be able to convert Mistral models
+ if os.path.exists(f"{args.model}/added_tokens.json"):
+ with open(f"{args.model}/added_tokens.json", "w") as f:
+ f.write("{}\n")
+
+config = model.llm.config
+config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5"
+config.auto_map = {
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
+ "AutoModel": "modeling_minicpm.MiniCPMModel",
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
+}
+model.llm.save_pretrained(f"{args.model}/model")
+tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
+tok.save_pretrained(f"{args.model}/model")
+# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py")
+
+print("Done!")
+print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
+print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")